Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(5): 33-42


H+-Ca2+-exchanger in the myometrium mitochondria: modulation of exogenous and endogenous compounds

Kolomiiets' OV, Danylovych IuV, Danylovych HV

    O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.05.033

Abstract

The properties of ДpH-induced Ca2+-transport from isolated rat myometrium mitochondria was investigated. Ca2+-accumulation was carried out in the presence of Mg-ATP2- and succinate. Transport of Ca2+ recorded using Ca2+-sensitive fluorescent probe Fluo-4 AM. It is shown that acidification of extramitochondrial medium is accompanied by stimulation of Ca2+ release from mitochondria. This process is insensitive to the tetraphenylphosphonium which is relatively specific Na+–Ca2+-exchanger inhibitor of mitochondrial inner membrane, but inhibited in the presence of monoclonal antibodies directed against the protein LETM1 (Anti-LETM1). LETM1 protein in some tissues is the molecular basis of the H+–Ca2+- exchanger functioning on mitochondria. It was found that the H+–Ca2+-exchanger is stimulated by 100 мM amiloride (diuretic) and inhibited by Mg ions in milimolar concentrations. The transport system was completely resistant to the action of nitric oxide (sodium nitroprusside and sodium nitrite), but was stimulated by macrocyclic compounds of Calixarenes (C-97 and C-99) in submicromolar concentrations. Thus, the mitochondria of rat myometrium probably not have a system of Na+–Ca2+-exchanger, and provide the maintenance of the matrix Ca2+-homeostasis with H+–Ca2+-exchanger. Since the transport system high affinity activated by Calixarenes, further investigation of the influence of these compounds on the transport process makes promising. Key words: H+–Ca2+-exchanger, LETM1, mitochondria, Calixarenes, myometrium.

Keywords: H+–Ca2+-exchanger, LETM1, mitochondria,Calixarenes, myometrium.

References

  1. Kostyuk PG, Kostyuk OP, Lukyanets EA. Intracellular calcium signaling: structures and functions. Kyiv, Naukova Dumka, 2010. PubMedCentral
  2.  
  3. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004 Feb;53 Suppl 1:S96-102. CrossRef PubMed
  4.  
  5. Mitochondrial signaling in health and disease. Eds. S. Orrenius, L. Packer, E. Cadenas. N.Y.: CRC Press; 2012.
  6.  
  7. Piao L., Li Y., Kim S.J., Byun H.S., Huang S.M. Association of LETM1 and MRPL36 contributes to the regulation of mitochondrial ATP production and necrotic cell death. Cancer Res. 2009 Apr 15;69(8):3397-404. CrossRef PubMed
  8.  
  9. Veklich TO. Transport of Ca2+ in the smooth muscle cells mitochondria: Manuscript. Kiev: Palladin Institute of Biochemistry of the NASU; 2003 .
  10.  
  11. Kandaurova NV. Ca2+-induced changes of membrane potertial of myometrium mitochondria: Manuscript. Kiev: Palladin Institute of Biochemistry of the NASU; 2011 . PubMed
  12.  
  13. Crosdas G, Varnai P, Golenar T. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Mol Cell Endocrinol. 2012 Apr 28;353(1-2):109-13. CrossRef PubMed PubMedCentral
  14.  
  15. Pan S., Ryu S.-Y., Sheu S.-S. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Sci China Life Sci. 2011 Aug;54(8):763-9. CrossRef PubMed PubMedCentral
  16.  
  17. Santo-Domingo J., Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):907-12. CrossRef PubMed
  18.  
  19. Jiang D, Zhao L, Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science. 2009 Oct 2;326(5949):144-7. CrossRef PubMed PubMedCentral
  20.  
  21. Nowikovsky K., Pozzan T., Rizzuto R., Scorrano L., Bernardi P. The pathophysiology of LETM1. J Gen Physiol. 2012 Jun;139(6):445-54. CrossRef PubMed PubMedCentral
  22.  
  23. Waldeck-Weirmair M, Jean-Quartier C, Rost R, Khan MJ. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute two distinct mitochondrial Ca2+ uptake pathways. J Biol Chem. 2011 Aug 12;286(32):28444-55. CrossRef PubMed PubMedCentral
  24.  
  25. Mc Comas AJ. Skeletal muscle (structure and function). - Kiev: Olympic. Lit-ra; 2001 .
  26.  
  27. Barany EdM. Biochemistry of smooth muscle contraction. San Diego, California: Acad. Press; 1996.
  28.  
  29. Kosterin SO. Transport of calcium in the smooth muscles. Kiev: Naukova dumka; 1990 .
  30.  
  31. Kosterin SA, Burdyga ThV, Fomin VP, Grover AK. Mechanism of Ca2+-transport in myometrium. Control of Uterine Contractility. Eds. R. E. Garfield, T. N. Tabb. London, Tokyo: CRC Press, Boca Raton, Ann Arbor; 1994.
  32.  
  33. Danylovych GV, Danylovych YuV, Kolomiets OV, Shunikhin AJu, Gorchev VF, Karakhim SA, Kosterin SO, Rodik RV, Cherenok SO, Kalchenko VI. Shanges in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATP-ase. Ukr Biokhim Zh 2012 Nov-Dec;84(6):37-48 .
  34.  
  35. Kosterin SO. The possible H+-dependent functional connection between plasma membrane and mitochondria in the smooth muscle cell. Ukr Biokhim Zh. 1998 Nov- Dec;70(6):152-60 . PubMed
  36.  
  37. Vovkanych LS, Dubytsky LO. Kinetical properties of the H+-stimulated rat liver mitochondria Ca2+ efflux. Exp Clin Physiol Biochem 2001; 15(3):34-37 .
  38.  
  39. Kolomiets OV, Danylovych YuV, Danylovych GV, Kosterin SO. Regularities of Ca2+/H+-exchange in mitochondria myometrium. Ukr Biokhim Zh 2014 Jul-Aug;86(3):41-8 .
  40.  
  41. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. CrossRef  
  42. Kolomiets OV, Danylovych YuV, Danylovych GV, Kosterin SO. Ca2+ accumulation study in isolated smooth muscle mitochondria using Fluo-4 AM. Ukr Biokhim Zh 2013 Jul-Aug;85(4):30-9 .
  43.  
  44. Bailay NTJ. Statistical methods in biology. Great Britain: Cambridge University Press; 1995. CrossRef  
  45. Shin JY, Chung YS, Kang B, Jiang HL. Co-delivery of LETM1 and CTMP synergistically inhibits tumor growth in H-ras 12V liver cancer model mice. Cancer Gene Ther. 2013 Mar;20(3):186-94. CrossRef PubMed
  46.  
  47. Rizzuto R, Marchi S, Bonora M, Aguiary P, Bononi A. Ca2+ transfer from the ER to mitochondria: When, how and why. Biochim Biophys Acta. 2009 Nov;1787(11):1342-51. CrossRef PubMed PubMedCentral
  48.  
  49. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondrria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755-86. CrossRef PubMed
  50.  
  51. Kolomiets OV, Danylovych YuV, Danylovych GV. Influence of nitric oxide on transmembrane calcium exchange and mitochondrial inner membrane polarization of smooth muscle. III Conference of young scientists "Physiology: from Molecules to Organism" Kiev: Bogomoletz Institute of Physiology NASU; 2013 Oct: 15-16 .
  52.  
  53. Labyntseva RD, Slinchenko NM, Veklich TO, Rodik RV, Cherenok SO, Boiko VI, Kal'chenko VI, Kosterin SO. Comparative study of calixarene effect on Mg2+ -dependent ATP-hydrolase enzymatic systems from smooth muscle cells of the uterus Ukr Biokhim Zh. 2007 May-Jun;79(3):44-54 .
  54.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.