Acute L-glutamine deprivation affects the expression of TP53-related protein genes in U87 glioma cells.
Minchenko DO1,2, Danilovskyi SV1, Kryvdiuk IV1, Hlushchak NA1, Kovalevska OV1, Karbovskyi LL1, Minchenko OH1
- Department of Molecular Biology, Palladin Institute of Biochemistry NationalAcademy of Sciences of Ukraine, Kyiv, Ukraine;
- Departments of Pediatrics, Bogomolets National Medical University, 13Shevchenka Bvld., 01601, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.04.011
Abstract
Ми дослідили ефект гострого дефіциту L-глутаміну на
експресію таких генів, залежних від протеїну пухлин р53
(TP53), як RYBP, TOPORS, TP53BP1, TP53TG1, SESN1,
NME6, та ZMAT3 у клітинах гліоми з виключеною актив-
ністю ERN1. Показано, що блокада функції гена ERN1
у клітинах гліоми лінії U87 посилює експресію генів
RYBP та SESN1, при цьому інтенсивність експресії генів
TP53BP1, TP53TG1, TOPORS, NME6 та ZMAT3 знижу-
ється. Більше того, рівень експресії генів RYBP, SESN1,
TP53BP1 та ZMAT3 збільшується у контрольних клітинах
гліоми за умов дефіциту L-глутаміну у середовищі, але
виключення функції ензиму ERN1 істотно посилює цей
ефект на експресію всіх цих генів. Водночас виключення
функції ензиму ERN1 знімає залежність експресії генів
TP53TG1 та TOPORS від дефіциту L-глутаміну. Результати
цієї роботи вказують на залежність експресії більшості
асоційованих з TP53 генів від умов гострого дефіциту глу-
таміну у середовищі, як і від ERN1, основної сигнальної
системи стресу ендоплазматичного ретикулума.
Keywords:
дефіцит глутаміну, стрес ендоплазматич-ного ретикулума, RYBP, TP53BP1, TP53TG1, TOPORS,SESN1, ZMAT3, NME6, експресія генів.
References
- Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007 Nov 15; 67(22): 10631–4.
CrossRef
PubMed
- Schroder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008 Mar; 65(6): 862–994.
CrossRef
PubMed
- Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012 Jun 25; 197(7): 857-67.
CrossRef
PubMed PubMedCentral
- Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31; 107(35): 15553–8.
CrossRef
PubMed PubMedCentral
- Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemiainduced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul 15; 67(14): 6700–7.
CrossRef
PubMed
- Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 74: 739–89.
CrossRef
PubMed
- Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006 Jan 24; 66(2 Suppl 1): S102–9.
CrossRef
PubMed
- Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009 Aug 10; 186(3): 323–31.
CrossRef
PubMed PubMedCentral
- Dent P. Non-canonical p53 signaling to promote invasion. Cancer Biol Ther. 2013 Oct 1; 14(10): 879-80.
CrossRef
PubMed PubMedCentral
- Golubovskaya VM, Cance WG. Targeting the p53 pathway. Surg Oncol Clin N Am. 2013 Oct; 22(4): 747-64.
CrossRef
PubMed PubMedCentral
- Lee SK, Kim YS. Phosphorylation of eIF2? attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int J Oncol. 2013 Mar; 42(3): 810–6.
CrossRef
PubMed PubMedCentral
- Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb; 10(2): 166-72.
CrossRef
PubMed PubMedCentral
- Novak RL, Phillips AC. Adenoviral-mediated Rybp expression promotes tumor cell-specific apoptosis. Cancer Gene Ther. 2008 Nov; 15(11): 713-22.
CrossRef
PubMed
- Grotsky DA, Gonzalez-Suarez I, Novell A, Neumann MA, Yaddanapudi SC, Croke M, Martinez-Alonso M, Redwood AB, Ortega-Martinez S, Feng Z, Lerma E, Ramon y Cajal T, Zhang J, Matias-Guiu X, Dusso A, Gonzalo S. BRCA1 loss activates cathepsin L-mediated degradation of 53BP1 in breast cancer cells. J Cell Biol. 2013 Jan 21; 200(2): 187-202.
CrossRef
PubMed PubMedCentral
- Hong S, Li X, Zhao Y, Yang Q, Kong B. TP53BP1 suppresses tumor growth and promotes susceptibility to apoptosis of ovarian cancer cells through modulation of the Akt pathway. Oncol. Rep. 2012 Apr; 27(4): 1251-7.
CrossRef
PubMed PubMedCentral
- Li S, Shi G, Yuan H, Zhou T, Zhang Q, Zhu H, Wang X. Abnormal expression pattern of the ASPP family of proteins in human non-small cell lung cancer and regulatory functions on apoptosis through p53 by iASPP. Oncol Rep. 2012 Jul; 28(1): 133-40.
CrossRef
- Wang Y, Godin-Heymann N, Dan Wang X, Bergamaschi D, Llanos S, Lu X. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells. Cell Death Differ. 2013 Apr; 20(4): 525-34.
CrossRef
PubMed PubMedCentral
- Moudry P, Lukas C, Macurek L, Neumann B, Heriche JK, Pepperkok R, Ellenberg J, Hodny Z, Lukas J, Bartek J. Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ. 2012 May; 19(5): 798-807.
CrossRef
PubMed PubMedCentral
- Noon AT, Goodarzi AA. 53BP1-mediated DNA double strand break repair: insert bad pun here. DNA Repair (Amst). 2011 Oct 10; 10(10): 1071-6.
CrossRef
PubMed
- Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG, Shao C, Yang Q. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of NF-?B through miR-146a. Carcinogenesis. 2012 Dec; 33(12): 2593-600.
CrossRef
PubMed
- Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem. 2009 Jul 10; 284(28): 18588-92.
CrossRef
PubMed PubMedCentral
- Serao NV, Delfino KR, Southey BR, Beever JE, Rodriguez- Zas SL. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genomics. 2011 Jun 7; 4: 49.
CrossRef
PubMed PubMedCentral
- Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol. 2009 Oct 23; 9: 256.
CrossRef
PubMed PubMedCentral
- Wang CH, Ma N, Lin YT, Wu CC, Hsiao M, Lu FL, Yu CC, Chen SY, Lu J. A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells. 2012 Oct; 30(10): 2199-211.
CrossRef
PubMed
- Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008 Aug 8; 134(3): 451-60.
CrossRef
PubMed PubMedCentral
- Mendez Vidal C, Prahl M, Wiman KG. The p53-induced Wig-1 protein binds double-stranded RNAs with structural characteristics of siRNAs and miRNAs. FEBS Lett. 2006 Aug 7; 580(18): 4401-8.
CrossRef
PubMed
- Vilborg A, Bersani C, Wickstrom M, Segerstrom L, Kogner P, Wiman KG. Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth. Cell Death Dis. 2012 Apr 19; 3: E298.
CrossRef
PubMed PubMedCentral
- Kim BC, Lee HC, Lee JJ, Choi CM, Kim DK, Lee JC, Ko YG, Lee JS. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J. 2012 Nov 14; 31(22): 4289-303.
CrossRef
PubMed PubMedCentral
- Mills KD. Tumor suppression: Putting p53 in context. Cell Cycle. 2013 Nov 15; 12(22): 3461-2.
CrossRef
PubMed PubMedCentral
- Shahbazi J, Lock R, Liu T. Tumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesis. Front Genet. 2013 May 13; 4: 80.
CrossRef
PubMed PubMedCentral
- Thomas SE, Malzer E, Ordonez A, Dalton LE, van 't Wout EF, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during ER stress. J Biol Chem. 2013 Mar 15; 288(11): 7606-17.
CrossRef
PubMed PubMedCentral
- Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene. 1999 Jan 7; 18(1): 127-37.
CrossRef
PubMed
- Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics. 2012 Jun 15; 44(12): 638-50.
CrossRef
PubMed PubMedCentral
- Perina D, Bosnar MH, Mikoc A, Muller WE, Cetkovic H. Characterization of Nme6-like gene/protein from marine sponge Suberites domuncula. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct; 384(4-5): 451-60.
CrossRef
PubMed
- Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO- 1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 2005 Sep 12; 579(22): 5007-12.
CrossRef
PubMed
- Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H. DJ-1 restores p53 transcription activity inhibited by Topors/ p53BP3. Int J Oncol. 2005 Mar; 26(3): 641-8.
CrossRef
- Guo W, Zou YB, Jiang YG, Wang RW, Zhao YP, Ma Z. Zinc induces cell cycle arrest and apoptosis by upregulation of WIG-1 in esophageal squamous cancer cell line EC109. Tumour Biol. 2011 Aug; 32(4): 801-8.
CrossRef
PubMed
- Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011 Sep 1; 3(9): a004424.
CrossRef
PubMed PubMedCentral
- Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med.2013 Jan; 17(1): 30-54.
CrossRef
PubMed PubMedCentral
- Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans. 2013 Apr; 41(2): 657-63.
CrossRef
PubMed
|