Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(4): 11-21


Acute L-glutamine deprivation affects the expression of TP53-related protein genes in U87 glioma cells.

Minchenko DO1,2, Danilovskyi SV1, Kryvdiuk IV1, Hlushchak NA1, Kovalevska OV1, Karbovskyi LL1, Minchenko OH1

  1. Department of Molecular Biology, Palladin Institute of Biochemistry NationalAcademy of Sciences of Ukraine, Kyiv, Ukraine;
  2. Departments of Pediatrics, Bogomolets National Medical University, 13Shevchenka Bvld., 01601, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.04.011

Abstract

Ми дослідили ефект гострого дефіциту L-глутаміну на експресію таких генів, залежних від протеїну пухлин р53 (TP53), як RYBP, TOPORS, TP53BP1, TP53TG1, SESN1, NME6, та ZMAT3 у клітинах гліоми з виключеною актив- ністю ERN1. Показано, що блокада функції гена ERN1 у клітинах гліоми лінії U87 посилює експресію генів RYBP та SESN1, при цьому інтенсивність експресії генів TP53BP1, TP53TG1, TOPORS, NME6 та ZMAT3 знижу- ється. Більше того, рівень експресії генів RYBP, SESN1, TP53BP1 та ZMAT3 збільшується у контрольних клітинах гліоми за умов дефіциту L-глутаміну у середовищі, але виключення функції ензиму ERN1 істотно посилює цей ефект на експресію всіх цих генів. Водночас виключення функції ензиму ERN1 знімає залежність експресії генів TP53TG1 та TOPORS від дефіциту L-глутаміну. Результати цієї роботи вказують на залежність експресії більшості асоційованих з TP53 генів від умов гострого дефіциту глу- таміну у середовищі, як і від ERN1, основної сигнальної системи стресу ендоплазматичного ретикулума.

Keywords: дефіцит глутаміну, стрес ендоплазматич-ного ретикулума, RYBP, TP53BP1, TP53TG1, TOPORS,SESN1, ZMAT3, NME6, експресія генів.

References

  1. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007 Nov 15; 67(22): 10631–4. CrossRef PubMed
  2.  
  3. Schroder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008 Mar; 65(6): 862–994. CrossRef PubMed
  4.  
  5. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012 Jun 25; 197(7): 857-67. CrossRef PubMed PubMedCentral
  6.  
  7. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31; 107(35): 15553–8. CrossRef PubMed PubMedCentral
  8.  
  9. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemiainduced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul 15; 67(14): 6700–7. CrossRef PubMed
  10.  
  11. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 74: 739–89. CrossRef PubMed
  12.  
  13. Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006 Jan 24; 66(2 Suppl 1): S102–9. CrossRef PubMed
  14.  
  15. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009 Aug 10; 186(3): 323–31. CrossRef PubMed PubMedCentral
  16.  
  17. Dent P. Non-canonical p53 signaling to promote invasion. Cancer Biol Ther. 2013 Oct 1; 14(10): 879-80. CrossRef PubMed PubMedCentral
  18.  
  19. Golubovskaya VM, Cance WG. Targeting the p53 pathway. Surg Oncol Clin N Am. 2013 Oct; 22(4): 747-64. CrossRef PubMed PubMedCentral
  20.  
  21. Lee SK, Kim YS. Phosphorylation of eIF2? attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int J Oncol. 2013 Mar; 42(3): 810–6. CrossRef PubMed PubMedCentral
  22.  
  23. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb; 10(2): 166-72. CrossRef PubMed PubMedCentral
  24.  
  25. Novak RL, Phillips AC. Adenoviral-mediated Rybp expression promotes tumor cell-specific apoptosis. Cancer Gene Ther. 2008 Nov; 15(11): 713-22. CrossRef PubMed
  26.  
  27. Grotsky DA, Gonzalez-Suarez I, Novell A, Neumann MA, Yaddanapudi SC, Croke M, Martinez-Alonso M, Redwood AB, Ortega-Martinez S, Feng Z, Lerma E, Ramon y Cajal T, Zhang J, Matias-Guiu X, Dusso A, Gonzalo S. BRCA1 loss activates cathepsin L-mediated degradation of 53BP1 in breast cancer cells. J Cell Biol. 2013 Jan 21; 200(2): 187-202. CrossRef PubMed PubMedCentral
  28.  
  29. Hong S, Li X, Zhao Y, Yang Q, Kong B. TP53BP1 suppresses tumor growth and promotes susceptibility to apoptosis of ovarian cancer cells through modulation of the Akt pathway. Oncol. Rep. 2012 Apr; 27(4): 1251-7. CrossRef PubMed PubMedCentral
  30.  
  31. Li S, Shi G, Yuan H, Zhou T, Zhang Q, Zhu H, Wang X. Abnormal expression pattern of the ASPP family of proteins in human non-small cell lung cancer and regulatory functions on apoptosis through p53 by iASPP. Oncol Rep. 2012 Jul; 28(1): 133-40. CrossRef  
  32. Wang Y, Godin-Heymann N, Dan Wang X, Bergamaschi D, Llanos S, Lu X. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells. Cell Death Differ. 2013 Apr; 20(4): 525-34. CrossRef PubMed PubMedCentral
  33.  
  34. Moudry P, Lukas C, Macurek L, Neumann B, Heriche JK, Pepperkok R, Ellenberg J, Hodny Z, Lukas J, Bartek J. Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ. 2012 May; 19(5): 798-807. CrossRef PubMed PubMedCentral
  35.  
  36. Noon AT, Goodarzi AA. 53BP1-mediated DNA double strand break repair: insert bad pun here. DNA Repair (Amst). 2011 Oct 10; 10(10): 1071-6. CrossRef PubMed
  37.  
  38. Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG, Shao C, Yang Q. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of NF-?B through miR-146a. Carcinogenesis. 2012 Dec; 33(12): 2593-600. CrossRef PubMed
  39.  
  40. Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem. 2009 Jul 10; 284(28): 18588-92. CrossRef PubMed PubMedCentral
  41.  
  42. Serao NV, Delfino KR, Southey BR, Beever JE, Rodriguez- Zas SL. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genomics. 2011 Jun 7; 4: 49. CrossRef PubMed PubMedCentral
  43.  
  44. Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol. 2009 Oct 23; 9: 256. CrossRef PubMed PubMedCentral
  45.  
  46. Wang CH, Ma N, Lin YT, Wu CC, Hsiao M, Lu FL, Yu CC, Chen SY, Lu J. A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells. 2012 Oct; 30(10): 2199-211. CrossRef PubMed
  47.  
  48. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008 Aug 8; 134(3): 451-60. CrossRef PubMed PubMedCentral
  49.  
  50. Mendez Vidal C, Prahl M, Wiman KG. The p53-induced Wig-1 protein binds double-stranded RNAs with structural characteristics of siRNAs and miRNAs. FEBS Lett. 2006 Aug 7; 580(18): 4401-8. CrossRef PubMed
  51.  
  52. Vilborg A, Bersani C, Wickstrom M, Segerstrom L, Kogner P, Wiman KG. Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth. Cell Death Dis. 2012 Apr 19; 3: E298. CrossRef PubMed PubMedCentral
  53.  
  54. Kim BC, Lee HC, Lee JJ, Choi CM, Kim DK, Lee JC, Ko YG, Lee JS. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J. 2012 Nov 14; 31(22): 4289-303. CrossRef PubMed PubMedCentral
  55.  
  56. Mills KD. Tumor suppression: Putting p53 in context. Cell Cycle. 2013 Nov 15; 12(22): 3461-2. CrossRef PubMed PubMedCentral
  57.  
  58. Shahbazi J, Lock R, Liu T. Tumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesis. Front Genet. 2013 May 13; 4: 80. CrossRef PubMed PubMedCentral
  59.  
  60. Thomas SE, Malzer E, Ordonez A, Dalton LE, van 't Wout EF, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during ER stress. J Biol Chem. 2013 Mar 15; 288(11): 7606-17. CrossRef PubMed PubMedCentral
  61.  
  62. Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene. 1999 Jan 7; 18(1): 127-37. CrossRef PubMed
  63.  
  64. Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics. 2012 Jun 15; 44(12): 638-50. CrossRef PubMed PubMedCentral
  65.  
  66. Perina D, Bosnar MH, Mikoc A, Muller WE, Cetkovic H. Characterization of Nme6-like gene/protein from marine sponge Suberites domuncula. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct; 384(4-5): 451-60. CrossRef PubMed
  67.  
  68. Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO- 1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 2005 Sep 12; 579(22): 5007-12. CrossRef PubMed
  69.  
  70. Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H. DJ-1 restores p53 transcription activity inhibited by Topors/ p53BP3. Int J Oncol. 2005 Mar; 26(3): 641-8. CrossRef  
  71. Guo W, Zou YB, Jiang YG, Wang RW, Zhao YP, Ma Z. Zinc induces cell cycle arrest and apoptosis by upregulation of WIG-1 in esophageal squamous cancer cell line EC109. Tumour Biol. 2011 Aug; 32(4): 801-8. CrossRef PubMed
  72.  
  73. Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011 Sep 1; 3(9): a004424. CrossRef PubMed PubMedCentral
  74.  
  75. Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med.2013 Jan; 17(1): 30-54. CrossRef PubMed PubMedCentral
  76.  
  77. Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans. 2013 Apr; 41(2): 657-63. CrossRef PubMed
  78.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.