Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(3): 46-53


The influence of amylin on the bile acid spectrum in rats

Vasheka IP, Vesel'skyĭ SP, Horenko ZA, Hrinchenko OA, Karbovs'ka LS, Makarchuk MIu

    Taras Shevchenko National University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.03.046


Abstract

In acute experiments on the rats with cannulated common biliary duct, the influence of amylin on the level of bile secretion and bile acids spectrum was investigated. It was shown that subcutaneous administration of amylin at the dose 1 mg/kg body weight doesn’t affect the volume of secreted bile. Under these conditions, the concentration of taurocholic acid was increased and the concentration of tauroconjugates of chenodeoxycholic and deoxycholic acids was decreased in the bile. At the same time, the concentration of glycocholates remained constant and of unconjugated bile acids was decreased. This redistribution of bile acids spectrum leads to an increase in the coefficient of conjugation. Amylin changes the ratio of trygydroxy- and dygydroxycholates in secreted bile leading to an increase in the coefficient of hydroxylation. These results suggest that amylin enhances the processes of conjugation and hydroxylation of bile acids in hepatocytes that results in improvement of detergent properties of the bile, particularly, the ability of the bile to maintain the cholesterol in dissolved state. At the lowest effective dose, amylin does not alter the concentration of glucose in the blood.

Keywords: amylin, bile formation, taurocholates, glycocholates,unconjugates bile acids.

References

  1. Otrebska D. Amylin – new peptide from B-cells of pancreatic islets. Pol Arch Med Wewn. 1993 Jun; 89(6):507-511. PubMed
  2.  
  3. Wookey P, Xuereb L, Tikelis C, Cooper M. Amylin in the periphery. Scientif World J. 2003 Mar 24;24(3):163-175. CrossRef PubMed
  4.  
  5. Beaumont K, Pittner R, Moore C, Wolfe-Lopez D, Prickett K, Young A, Rink T. Regulation of muscle glycogen metabolism by CGRP and amylin: CGRP receptors not involved. Br J Pharm. 1995 July;115(5):713-715. CrossRef  
  6. Moreno P, Acitores A, Gutierrez-Rojas I, Nuche-Berengue B, El Assar M, Rodriguez-Manas L, Gomis R, Valverde I, Visa M, Malaisse W, Novials A, Gonzalez N, Villanueva- Penacarrilo M. Amylin effect in extrapancreatic tissues participating in glucose homeostasis, in normal, insulinresistant and type 2 diabetic state. Peptides. 2011 Oct;32(10):2077-2085. CrossRef PubMed
  7.  
  8. Grunberger G. Novel therapies for the management of type 2 diabetes mellitus: Part 1. Pramlintide and bromocriptine- QR. J. Diabet. 2013; 5:110-117. CrossRef PubMed
  9.  
  10. Haynes J, Hodgson W, Cooper M. Rat amylin mediates a pressor response in the anaesthetised rat: implications for the association between hypertension and diabetes mellitus. Diabetolog. 1997 Mar; 40(3):256-261. CrossRef PubMed
  11.  
  12. Yong A, Rink T, Wang M. Dose response characteristics for the hyperglycemic, hypercalcemic, hypotensive and hypocalcemic actions of amylin and calcitonin gene-related peptide-I (CGRP-alpha) in the fasted, anaesthetized rat. Life Scien. 1993; 52(27):1717-1726. CrossRef  
  13. Vine W, Smith P, LaChappell R, Blase E, Young A. Effects of rat amylin on renal function in the rat. Horm Metab Res. 1998 Aug; 30(8):518-522. CrossRef PubMed
  14.  
  15. Zhu G, Dudley D, Saltiel A. Amylin increases cyclic AMP formation in L6 myocytes through calcitonin gene-related peptide receptors. Biochem Biophys Res Commun. 1991 Jun 14; 177(2):771-776. CrossRef  
  16. Gedulin B, Jodka C, Herrmann K, Young A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist AC187.Regul Pept. 2006 Dec 10;137(3):121-127. CrossRef PubMed
  17.  
  18. Young A. Amylin. Pharm. 2005; 52:229-234. 12. SU 1624322 A1 copyright certificate description No. 4411066/14 IPC G 01 N 33/50 A method for determination of bile acids in biological liquid Veselsky S.P., Lyashenko P.S., Lukyanenko I.A.[in Russian]
  19.  
  20. Potes C, Lutz T. Brainstem mechanisms of amylin-induced anorexia. Physiol Behav. 2010 Jul 14; 100(5):511-518. CrossRef PubMed
  21.  
  22. Potes C, Turek V, Cole R, Vu C, Roland B, Roth J, Riediger T, Lutz T. Noradrenergic neurons of the area postrema mediate amylin's hypophagic action. Am J Physiol RegulIntegr Comp Physiol. 2010 Aug; 299(2):623-631. CrossRef PubMed
  23.  
  24. Hermann K, Frias J, Edelman S, Lutz K, Shan K, Chen S, Maggs D, Kolterman O. Pramlintide improved measures of glycemic control and body weight in patients with type 1 diabetes mellitus undergoing continuous subcutaneous insulin infusion therapy. Postgrad Med. 2013 May; 125(3):136-144. CrossRef PubMed
  25.  
  26. Pan J, Berdanier C. Dietary fat saturation affects glucose metabolism without affecting insulin receptor number and affinity in adipocytes from BHE rats 1. J Nutr. 1991 Dec 20; 121:1811-1819. CrossRef PubMed
  27.  
  28. Teff K, Petrova M, Havel P, Townsend R. 48-h-Glucose infusion in humans: effect on hormonal responses, hunger and food intake. Physiol Behav. 2007 Apr 23; 90(5):733-743. CrossRef PubMed PubMedCentral
  29.  
  30. Bhogal R, Smith D, Bloom S. Investigation and characterization of binding sites for islet amyloid polypeptide in rat membranes. Endocrinol. 1992 Feb;130(2):906-913. PubMed
  31.  
  32. Chantry A, Leighton B, Day A. Cross-reactivity of amylin with calcitonin-gene-related peptide binding sites in rat liver and skeletal muscle membranes. Biochem J. 1991;277:139-143 CrossRef PubMed PubMedCentral
  33.  
  34. Cherrington N, Hartley D, Li N, Johnson D, Klaassen C. Organ distribution of multidrug resistance proteins 1,2, and 3 (Mrp1, 2 and 3) mRNA and hepatic induction of Mrp3 byconstitutive androstane receptor activators in rats. J PharmExperiment Therapeutic. 2002;30(1):97-104. CrossRef  
  35. Koopmans S, Mansfeld A, Jansz H, Krans H, Radder J, Frolich M, Boer S, Kreutter D, Andrews G, Maassen J. Amylin-induced in vivo insulin resistance in consciousrats: the liver is more sensitive to amylin than peripheral tissues. Diabetolog. 1991; 34(4):218-224. CrossRef  
  36. Stephens T, Heath W, Hermeling R. Presence of liver CGRP/Amylin receptors in only nonparenchymal cells and absence of direct regulation of rat liver glucose metabolism by CGRP/Amylin. Diabetes. 1991 Mar; 40:395-400. CrossRef PubMed
  37.  
  38. Houslay M, Morris N, Savage A, Marker A, Bushfield M. Regulation of hepatocyte adenylate cyclase by amylin and CGRP: a single receptor displaying apparent negative cooperatively towards CGRP and simple saturation of kinetics for amylin, a requirement for phosphodiesterase inhibition to observe elevated hepatocyte cyclic AMP levels and the phosphorylation of Gi-2. J Cel Biochem. 1994; 55:66-82. CrossRef  
  39. Hagenbuch B, Meier P. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest. 1994 Mar;93(3):1326-1331. CrossRef PubMed PubMedCentral
  40.  
  41. Kosters A, Karpen S. Bile acid transporters in health and disease. Xenobiotic. 2008;38(7-8):1043-1071. CrossRef PubMed PubMedCentral
  42.  
  43. Misra S, Varticovski L, Arias I. Mechanisms by which cAMP increases bile secretion in rat liver and canalicular membrane vesicles. AJP – Gastrointest. Liver Physiol. 2003 Apr 17; 285:316-324.
  44.  
  45. Cornish J, Callon K, Bava U, Kamona S, Cooper G, Reid I. Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone. 2001 Aug; 29(2):162-168. CrossRef  
  46. Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 2008 Nov; 43(5):813-818. CrossRef PubMed
  47.  
  48. Poyner D.R, Sexton P.M, Marshall I, Smith D.M, Quirion R, Born W, Muff R, Fisher J, Foord S.M. International union of pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002; 54:233-246. CrossRef  
  49. Muff R, Born W, Fischer J. Calcitonin, calcitonin generelated peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Diabetolog. 1991 Apr; 34(4):218-224.
  50.  
  51. Gorenko Z.A, Karbovs'ka L.S, Vasheka I.P, Vesel's'kii S.P. Vpliv kal'tsitoninu na zovnishn'osekretornu funktsiyu pechinki u shchuriv. Fiziol zhurn. 2011;57(3):40- 48.// Gorenko Z.A, Karbovska L.S, Vascheka I.P, Veselsky S.P. The influence of calcitonin on the liver bile formation function in rats Fiziol Zh. 2011;57(3):40-48.[in Ukrainian]
  52.  
  53. Bracq S, Machairas M, Clement B. Pidoux E, Andreoletti M, Moukhtar M.S, Jullienne A. Calcitonin gene expression in normal human liver. FEBS Lett. 1993 Sept 27; 331(1-2):15-18. CrossRef  
  54. Morishita T, Yamaguchi A, Fujita T, Chiba T. Activation of adenylate cyclase by islet amyloid polypeptide with COOH-terminal amide via calcitonin gene-related peptide receptors on rat liver plasma membranes. Diabetes. 1990 Jul; 39(7):875-877. CrossRef PubMed
  55.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.