Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(3): 27-31


The changes in the activity of tripeptidyl peptidase II in experimental atherosclerosis and hypertension

Pashevin DO, Honcharov SV, Tumanovs'ka LV, Dosenko VIe, Moĭbenko OO.

    Bogomoletz Institute of Physiology, National Academy Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.03.027

Abstract

The changes in the activity of intracellular proteolytic systems are important mechanisms in the damage of blood vessels walls and arterial hypertension. Tripeptidyl peptidase II (TPP II) is one of the giant intracellular protease that is still poorly known. It fulfils hydrolysis of peptides, coming from proteasomal proteolysis. Modeling of cholesterol atherosclerosis in rabbits (1 % of cholesterol in diet for 2 month) results in the significant decrease of TPP II activity in aorta tissues. This diet in spontaneously hypertensive rats (SHR) leads to a decrease of TPP II activity in aorta tissues (on 50%, Р<0,05) but has no influence on the activity of TPP II in Wistar rats. Application of Quercetin prevents the inhibition of TPP II activity in aorta tissues of rabbits and SHR at experimental hypercholesterolemia. The data received show that changes in the activity of TPP II play an important role in pathogenesis of blood vessels wall in atherosclerosis and arterial hypertension

Keywords: Tripeptidyl peptidase II, cholesterol atherosclerosis,arterial hypertension.

References

  1. Powell S.R., Herrmann J., Lerman A. The ubiquitinproteasome system and cardiovascular disease // Prog Mol Biol Transl Sci. 2012; 109; 295-346. CrossRef PubMed PubMedCentral
  2.  
  3. Zhang J., Wong J., Gao G. Tripeptidyl peptidase II serves as an alternative to impaired proteasome to maintain viral growth in the host cells. H. FEBS Lett. 2011; 585(1); 261-5. CrossRef PubMed
  4.  
  5. Rockel B., Kopec K., Lupas A. Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. Biochim Biophys Acta. 2012; 24; 237-45 CrossRef PubMed
  6.  
  7. Preta G., de Klark R., Gavioli R. The Enigma of Tripeptidyl-Peptidase II: Dual Roles in Housekeeping and Stress. J. Oncol. 2010; CrossRef PubMed PubMedCentral
  8.  
  9. Glas R., Bogyo M., McMaster J.S. A proteolytic system that compensates for loss of proteasome function. Nature. 1998; 392;618-22. CrossRef PubMed
  10.  
  11. van Endert P. Post-proteasomal and proteasomeindependent generation of MHC class I ligands. Cell Mol Life Sci. 2011; 68(99); 1553-67. CrossRef PubMed
  12.  
  13. Preta G, de Klark R, Glas R. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen speciesdependent DNA damage responses. Biochem Biophys Res Commun. 2009; 389(4); 575-9. CrossRef PubMed
  14.  
  15. Wray C.J., Tomkinson B., Robb B.W. Tripeptidylpeptidase II expression and activity are increased in skeletal muscle during sepsis. Biochem Biophys Res Commun. 2002; 296; 41-7. CrossRef  
  16. Lowry O.H., Rosenbrough N.J., Farr A.L. Protein measurement with Folin phenol reagent. J Biol Chem 1951; (193); 265-275. PubMed
  17.  
  18. Pashevin D.O., Tumanovska L.V., Dosenko V.E. Antiatherogenic effect of quercetin is mediated by proteasome inhibition in the aorta and circulating leukocytes // Pharmacol Rep. 201; 63(4); 1009-18.
  19.  
  20. Reits E., Neijssen J., Herberts C. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation // J Immunity. 2004; 20(4); 495-506. CrossRef  
  21. Grundtman C., Wick G. The autoimmune concept of atherosclerosis // Curr Opin Lipidol. 2011; 22(5); 327-34. CrossRef PubMed PubMedCentral
  22.  
  23. Preta G., de Klark R., Chakraborti S. MAP kinasesignalingcontrols nuclear translocation of tripeptidylpeptidase II in response to DNA damage and oxidative stress. Biochem Biophys Res Commun. 2010; 27; 324-30. CrossRef PubMed
  24.  
  25. Huai J., Firat E., Nil A. Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice. Proc Natl Acad Sci U S A. 2008; 105(13); 5177-82. CrossRef PubMed PubMedCentral
  26.  
  27. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013; 13(10); 709-21. CrossRef PubMed PubMedCentral
  28.  
  29. Rohla M., Weiss T.W. Metabolic syndrome, inflammation and atherothrombosis . Hamostaseologie; 2013; 34 (1);283-94. CrossRef PubMed
  30.  
  31. Woollard K.J. Immunological aspects of atherosclerosis. Clin Sci. (Lond). 2013; 125(5); 221-35. CrossRef PubMed
  32.  
  33. Kyrychenko VO, Nagibin VS, Tumanovska LV. Knockdownof PSMB7 Induces Autophagy in Cardiomyocyte Cultures: Possible Role in Endoplasmic Reticulum Stress . Pathobiology. 2014; 81(1);8-14 CrossRef PubMed
  34.  
  35. Geier E., Pfeifer G., Wilm M. A giant protease with otential to substitute for some functions of the proteasome. Science. 1999; 283;978-81. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.