Induction of oxidative stress in heart mitochondria in brain focal ischemia-reperfusion and protective effect of ecdysterone
Sharipov RR, Kotsiuruba AV, Kop"iak BS, Sahach VF.
O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.03.011

Abstract
Based on the fact that the acute phase of ischemic stroke is
accompanied by the development of heart damage, manifestations
of which are oxidative stress, morphological changes
in the myocardium, in the model of brain focal ischemia –
reperfusion, we investigated the oxidative stress in rat heart
mitochondria and possible mechanisms of cardioprotective
effect of ecdysterone. Under the conditions of brain focal ischemia
– reperfusion, there is an increase rate of the generation
of reactive oxygen species: superoxide (*O2
-) and hydroxyl
radicals (*OH), pools of stable hydrogen peroxide (H2O2), accumulate
products of lipid peroxidation (diene conjugates and
malonic dialdehyde), as a result of activation xanthine oxidase
(marker uric acid), lipooxygenase (marker leukotriene C4) and
cyclooxygenase (marker tromboksane B2) ways of *O2
-
generating.
In animals that received ecdysterone for 18 days, under
conditions of brain focal ischemia – reperfusion, the rate of
reactive oxygen species generation and the pools of lipid peroxidation
products were decreased, and the survival of animals
was increased. The obtained results support the development
of oxidative stress in heart mitochondria of rats, powerful antiradical
properties of ecdysterone, its cardioprotective effect,
in conditions of brain focal ischemia - reperfusion.
Keywords:
focal ischemia-reperfusion of the head brain, cerebrocardial syndrome, mitochondria of the heart, oxidative stress
References
- Dolgov AM. Tserebrokardialny syndrome in ischemic stroke. Herald of intensive therapy 1995;(2):15-18. [InRussian].
- Zhdanov GN, Gerasimov MM. Studying the content of proinflammatory and anti-inflammatory cytokines in the serum of patients with acute phase of ischemic stroke. Cytokines and Inflammation 2006;5(1):27-30.[In Russian].
- Costantini P, Belzacq AS, Vieira HL et al. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000;19(2):307-314.
CrossRef
PubMed
- Gunter TE, Yule DI, Gunter KK et al. Calcium and mitochondria. FEBS Lett. 2004;567(1):96-102.
CrossRef
PubMed
- Crompton M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol. 2000;12(4):414-419.
CrossRef
- Lafont R, Dinan L. Practical uses for ecdysteroids in mammals including humans: and update. J Insect Sci. 2003;3(7):1-30.
CrossRef
- Toth N, Hunyadi A, Bathori M, Zador E. Phytoecdysteroids and Vitamin D Analogues – Similarities in Structure and Mode of Action. Curr. Med. Chem.2010;17(18):1974-1994.
CrossRef
PubMed
- Kotsiuruba AV, Bukhanevich OM, Mehed' OF et al. The (27)-steroid hormones ecdysterone and calcitriol activate the phosphoinositol cycle in its membrane phase / Ukr Biokhim Zh. 1999;71(1):27-32. [In Ukrainian].
- Kotsyuruba AB, Bukhanevich OM, Tuganova AB and Tarakanov SS. Mechanisms of the early effect of biologically active hydroxysterols: calcitriol and ecdysterone. Identification of sphingomyelin as the effector mechanism of the early effect. Ukr Biokhim Zh. 1995;67(2):53-58.[In Ukrainian].
- Sagach VF, Korkach YP, Kotsyuruba AV et al. Inhibition of opening mitochondrial pore by ecdysterone in the heart of old rats / Fiziol Zh. 2008;54(4):3-10. [In Ukrainian].
- Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44(2):85-95.
CrossRef
PubMed
- Smrcka M, Otevrel F, Kuchtickova S et al. Experimental model of reversible focal ischemia in the rat / Scripta medica (BRNO) 2001;(74):391-398.
- Hossmann K-A. Animal models of cerebral ischemia. I. Review of literature. Cerebrovasc Dis. 1991;1:2-15.
CrossRef
- Takizawa S, Hakim AM. Animal models of cerebral ischemia. Rat models. Cerebrovasc. Dis. 1991;1:16-21.
CrossRef
- Conte D, Narindrasorasak S, Sarkar B et al. In vivo and in vitro iron-replaced zinc finger generates free radicals and causes DNA damage. J Biol Chem. 1996;271(9):5125-5130.
CrossRef
PubMed
- Humphries KM, Yoo Y, Szweda LI. Inhibition of NADHlinked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochemistry. 1998;37(2):552-557.
CrossRef
PubMed
- Kuthan H, Ullrich V, Estabrook RW. A quantitative test for superoxide radicals produced in biological systems. Biochem J. 1982;203(3):551-8.
CrossRef
PubMed PubMedCentral
- Gavrilov VB, Gavrilova AR, Khmara NF. Measurement of diene conjugates in blood plasma using the UV absorption of heptane and isopropanol extracts. LabWork. 1988;(2):60-64. [In Russian]
- Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271-278.
CrossRef
- Mayer SA, Lin J, Homma S et al. Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke. 1999;30(4):780-786.
CrossRef
PubMed
- Kotsiuruba AV, Bukhanevich OM, Tuhanova AV, Tarakanov SS. Mechanisms of the early effect of biologically active hydroxysterols: calcitriol and ecdysterone. Modulation of intracellular pools of arachidonic acid and products of its oxidative metabolism. Ukr Biokhim Zh. 1995;67(2):45-52. [In Ukrainian].
PubMed
- Gusev EI, Skvortsova VI, Kovalenko AV, Sokolov MA. Mechanisms of brain tissue damage in acute focal cerebral ischemia. Zh Nevrol Psikhiatr. 1999;99(2):65-70. [In Russian].
- Tarasov NI, Tepliakov AT, Malakhovich EV et al. State of lipid peroxidation, blood antioxidant defense in patients with myocardial infarction aggravated by circulatory insufficiency. Ter Arkh. 2002;74(12):12-15. [In Russian].
PubMed
|