Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(2): 12-17


Nitric oxide as a possible regulator of energy-dependent Ca2+ transport in mitochondria of uterine smooth muscle

Danylovych IuV, Kolomiiets' OV, Danylovych HV, Kosterin SO.

    O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
DOI: https://doi.org/10.15407/fz60.02.012

Abstract

The influence of the donor and the precursor of NO, namely 100 mM sodium nitroprusside and sodium nitrite on the energodependent Ca2+-transport in isolated mitochondria from rat myometrium was investigated. Changes in the mitochondrial matrix Ca2+-concentration was evaluated by spectrofluorimetry using Ca2+ sensitive probe Fluo-4 AM. Mg2+-ATP-dependent Ca2+-accumulation on mitochondria in the presence of succinate significantly stimulated by nitric oxide, in particular, 100 ?M sodium nitroprusside amplified the transport by 1.6 times relative to its control values. NO effect becomes significant only when the incubation of mitochondria with the compounds was performed. Ca2+-accumulation in the presence of sodium nitroprusside effectively suppressed by protonophore (CCCP) and ruthenium red (10 ?M). It was concluded that inner mitochondrial membrane Ca2+-uniporter stimulated by nitrogen oxide. Ca2+-accumulation in mitochondria in the presence of sodium nitroprusside was not sensitive to the action of a specific permeability transition pore inhibitor cyclosporine (5 ?M). This data indicates that the role of permeability transition pore is less significant than Ca2+-uniporter in the processes of Ca2+- transport in mitochondria under the nitric oxide action. Thus, nitric oxide stimulates the energo-dependent Ca2+-accumulation by myometrium mitochondria mediated their inner membrane Ca2+-uniporter functioning.

Keywords: mitochondria, nitric oxide, calcium, calciumuniporter, myometrium.

References

  1. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci (Landmark Ed) 2009 Jan 1;14:1-18. CrossRef  
  2. Bernal AL. The regulation of uterine relaxation. Semin Cell Dev Biol 2007 Jun;18(3):340-7. CrossRef PubMed
  3.  
  4. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical application. Cardiology 2012;122(1):55-68. CrossRef PubMed
  5.  
  6. Sladek MS, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol 1997;272(2):441-63. CrossRef  
  7. Pucovsky DV, Gordienko TB, Bolton V. Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pigsmall mesenteric arteries. J Physiol 2002;539(1):25-39. CrossRef PubMed PubMedCentral
  8.  
  9. Trebak M, Ginnan R, Singer HA, Jourdheuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010 Mar 1;12(5):657-74. CrossRef PubMed PubMedCentral
  10.  
  11. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 2006 Jul 15;71(2):310-21. CrossRef PubMed
  12.  
  13. Davidson SM, Duchen MR. Effects of NO on mitochondrialfunction in cardiomyocytes: pathophysiological relevance. Cardiovasc Res. 2006 Jul 1;71(1):10-21. CrossRef PubMed
  14.  
  15. Guilivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. Am J Physiol Cell Physiol 2006 Dec;291(6):C1225-31. CrossRef PubMed
  16.  
  17. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 2010 Feb 15;22(2):64-74. CrossRef PubMed PubMedCentral
  18.  
  19. Shiva S. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol 2013;1(1):40-44. CrossRef PubMed PubMedCentral
  20.  
  21. Tota B, Quintieri AM, Angelone T. The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function. Curr Med Chem 2010;17(18):1915-25. CrossRef PubMed
  22.  
  23. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 2005 Apr;26(4):190-5. CrossRef PubMed
  24.  
  25. Kostyuk PG, Kostyuk OP, Lukyanets EA. Intracellular calcium signaling: structures and functions. Kyiv: Nauk. Dumka; 2010. (In Ukrainian) PubMedCentral
  26.  
  27. Pan S, Ryu S-Y, Sheu S-S. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Sci China Life Sci 2011 Aug;54(8):763-9. CrossRef PubMed PubMedCentral
  28.  
  29. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 2010 Jun-Jul;1797(6-7):907-12. CrossRef PubMed
  30.  
  31. Duchen MR. Roles of mitochondria in health and disease. Diabetes 2004 Feb;53 Suppl 1:S96-102. CrossRef PubMed
  32.  
  33. Kosterin SA, Burdyga ThV, Fomin VP, Grover AK. Mechanism of Ca2+-transport in myometrium. From: Control of Uterine Contractility. Eds. Garfield RE, Tabb TN. London, Tokyo: CRC Press, Boca Raton, Ann Arbor; 1994.
  34.  
  35. Crosdas G, Varnai P, Golenar T. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Mol Cell Endocrinol 2012 Apr 28;353(1-2):109-13. CrossRef PubMed PubMedCentral
  36.  
  37. Kandaurova NV. Ca2+-induced changes of membrane potential of myometrium mitochondria: Dissertation for a scientific degree of the PhD of biological sciences. Kyiv: O. V. Palladin Institute of Biochemistry, NAS of Ukraine; 2011.
  38. Akopova OV, Sagach VF. Effect of nitric oxide donors on Ca2+-uptake in the rat heart and liver mitochondria. Ukr Biokhim Zh 2005;77(2):82-7. PubMed
  39.  
  40. Akopova OV, Kotsiuruba AV, Kharlamova OM, Korkach IuP, Sahach VF. The role of mitochondria in NO-dependent regulation of Na+, K+ -ATP activity in the rat aorta. Fiziol Zh 2010;56(4):76-85. PubMed
  41.  
  42. Akopova OV, Korkach IuP, Kotsiuruba AV, Kolchyns'ka LI, Sagach VF. Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo. Fiziol Zh 2012;58(2):3-15. PubMed
  43.  
  44. Kolomiets OV, Danylovych YuV, Danylovych GV, Kosterin SO. Ca2+ accumulation study in isolated smooth muscle mitochondria using Fluo-4 AM. Ukr Biokhim Zh 2013 Jul-Aug;85(4):30-9. (In Ukrainian)
  45.  
  46. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976 May 7;72:248-54.
  47. CrossRef  
  48. Bailay NTJ. Statistical methods in biology. Great Britain: Cambridge University Press; 1995. CrossRef  
  49. Danylovych YuV, Danylovych GV, Kolomiets OV, Kosterin SO, Karakhim SO, Chunikhin OJu. Investigation of nitrosactive compounds influence on polarization of the mitochondrial inner membrane in the rat uterus myocytes using potential sensitive fluorescent probe DiOC6(3). Ukr Biokhim Zh 2014 Jul-Aug;86(1):42-55. (In Ukrainian).
  50.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.