Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2014; 60(1): 18-24


The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury

Panasiuk OS, Shysh AM, Moĭbenko OO.

    O.O. Bogomoletz Institute of Physiology National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz60.01.018


Abstract

We have studied the functional parameters of mitochondria from hearts after isopreterenol-induced injury (two subcutane- ous injections of isopreterenol at the dose 60 mg/kg/day). We investigated the inruence of dietary ?-3 polyunsaturated fatty acids (?-3 PUFAs) administered to rats (Epadol, 0.1mg/100 gr of weight for 4 weeks) on these parameters. Isoproterenol- induced heart injury leads to a decreased parameters of respi- ration of isolated mitochondria in the presence of succinate. Administration of ?-3 PUFAs significantly restored the respiration rate of mitochondria: the state 3 respiration was increased by 70,12 %, the state 4 by 39,87 % and the respira- tory control ratio by 45,19 % compared to the corresponding parameters of experimental group. Also, it was shown the ability of ?-3 PUFAs to decrease mitochondria swelling (by 60%) in nominally free calcium solution. The results of the study indicate that ?-3 PUFAs improve the altered functions of the heart mitochondria evoked by isoproterenol-induced injury. Key words: mitochondria, ?-3 polyunsaturated fatty acids, isopreterenol.

Keywords: mitochondria, ω-3 polyunsaturated fatty acids, isopreterenol

References

  1. Zhukovska A. S., Shysh A. M., Moybenko A. A. Study the impact of omega-3 PUFA on fatty acid composition of heart, breath and swelling of mitochondria of the heart in experimental diabetes. Fiziol Zh. 2012;58(2):16-26.
  2.  
  3. Andersson D.C., Fauconnier J., Yamada T., Lacampagne A., Zhang S.J., Katz A. Westerblad Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. J Physiol. 2011 Apr 1;589(Pt 7):1791-801. CrossRef PubMed PubMedCentral
  4.  
  5. Bozcali E., Babalik E., Himmetoglu S., Mihmanli I., Toprak S. ω-3 fatty acid treatment in cardiac syndrome X: a double-blind, randomized, placebo-controlled clinical study. Coron Artery Dis. 2013 Jun;24(4):328-33. CrossRef PubMed
  6.  
  7. Chance B., Williams Gr. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65-134. CrossRef  
  8. Estabrook R.W. Mitochondrial respiratory control and the polarographic measurement of ADP:O rations. Methods Enzymol. 1967;10:41-47. CrossRef  
  9. De Caterina R. n-3 Fatty Acids in Cardiovascular Disease. N Engl J Med. 2011 Jun 23;364(25):2439-50. CrossRef PubMed
  10.  
  11. Di Paola M., Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1330-7. CrossRef PubMed
  12.  
  13. Galindo M.F., Jordán J., González-García C., Ce-a V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in  isolated rat brain mitochondria. Br J Pharmacol. 2003 Jun;139(4):797-804. CrossRef PubMed PubMedCentral
  14.  
  15. Garrel C., Alessandri J.M., Guesnet P., Al-Gubory K.H. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. Int J Biochem Cell Biol. 2012 Jan;44(1):123-31. CrossRef PubMed
  16.  
  17. Grynberg A., Fournier A., Sergiel J. P., Athias P. Effect of docosahexaenoic acid and eicosapentaenoic acid in the phospholipids of rat heart muscle cells on adrenoreceptor responsiveness and mechanism. J Mol Cell Cardiol. 1995 Nov;27(11):2507-20. CrossRef PubMed
  18.  
  19. Izem-Meziane M., Djerdjouri B., Rimbaud S., Caffin F., Fortin D., Garnier A., et al. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol. 2012 Feb 1;302(3):H665-74. CrossRef PubMed
  20.  
  21. Khairallah R.J., Kim J., O'Shea K.M., O'Connell K.A., Brown B.H., Galvao T., et al. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS One. 2012;7(3):e34402. CrossRef PubMed PubMedCentral
  22.  
  23. Kusunoki C., Yang L., Yoshizaki T., Nakagawa F., Ishikado A., Kondo M., et al. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2013 Jan 4;430(1):225-30. CrossRef PubMed
  24.  
  25. Osadchii O.E. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev. 2007 Mar;12(1):66-86. CrossRef PubMed
  26.  
  27. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007 May;12(5):913-22. CrossRef PubMed
  28.  
  29. Paltauf-Doburzynska J., Frieden M., Spitaler M., Graier W.F. Histamine-induced Ca2+ oscillations in a human endothelialcell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+- ATPase. J. Physiol.- 2000.- 524. P.701-13. J Physiol. 2000 May 1;524(Pt 3):701-13. CrossRef PubMed PubMedCentral
  30.  
  31. Panasiuk O., Shysh A., Bondarenko A., Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca2+-induced injury. Exp Clin Cardiol. 2013 Winter;18(1):e60-4. PubMed PubMedCentral
  32.  
  33. Pepe S., Tsuchiya N., Lakatta E.G., Hansford R.G. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999 Jan;276(1 Pt 2):H149-58. CrossRef  
  34. Rosca M.G., Hoppel C.L. Mitochondria in heart failure. Cardiovasc Res. 2010 Oct 1;88(1):40-50. CrossRef PubMed PubMedCentral
  35.  
  36. Sivakumar R., Anandh Babu P.V., Shyamaladevi C.S. Protective effect of aspartate and glutamate on cardiac mitochondrial function during myocardial infarction in experimental rats. Chem Biol Interact. 2008 Nov 25;176(2- 3):227-33.
  37.  
  38. Takuwa Y., Takuwa N., Rasmussen H. The Effects of Isoproterenol on Intracellular Calcium Concentration. J Biol Chem. 1988 Jan 15;263(2):762-8. PubMed
  39.  
  40. Uyemura S.A., Curti C. Respiration and mitochondrial ATPase in energized mitochondria during isoproterenolinduced cell injury of myocardium. Int J Biochem. 1991;23(10):1143-9. CrossRef  
  41. Wang S.B., Tian S., Yang F., Yang H.G., Yang X.Y., Du G.H. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol. 2009 Aug 1;615(1-3):125-32. CrossRef PubMed
  42.  
  43. Wieckowski M.R., Wojtczak L. Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Lett. 1998 Feb 27;423(3):339-42. CrossRef  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.