Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(6): 141-154


Mithochondria signaling in adaptation to hypoxia

Luk'ianova LD

    Institute of General Pathology and Pathophysiology, RAMS, Moscow, Russia
DOI: https://doi.org/10.15407/fz59.06.141


Abstract

A bioenergetic mechanism for development of urgent adaptation to hypoxia is considered. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of urgent adaptation to hypoxia necessary for 1) succinate- related energy synthesis in conditions of oxygen deficiency and formation of urgent resistance in the body; 2) succinate- related stabilization of HIF-1alpha and initiation of its transcriptional activity related with formation of urgent and long-term adaptation; 3) succinate- related activation of a succinate-specific receptor GPR91. Therefore succinate is a signaling molecule, and its effects are realized at three levels in hypoxia, intramitochondrial, intracellular and intercellular.

Keywords: hypoxia, adaptation, respiratory chain reprogramming,mitochondrial complexes I and II, HIF-1б, GPR91

References

  1. Kirova Yu.I., Germanova E.L., Luk'yanova L.D. Fenotipicheskie osobennosti dinamiki soderzhaniya HIF-1α v neortekse kris pri razlichnih rezhimah gipoksii . Byul. eksperim. biologii i meditsini. 2012. 154(12). P. 681-686.
  2.  
  3. Luk'yanova L.D. Bioenergeticheskaya gipoksiya. ponyatie, mehanizmi, korrektsiya . Tam zhe. 1997. 124 (9). P. 244-254.
  4.  
  5. Luk'yanova L.D. Mitohondrial'naya disfunktsiya tipovoi patologicheskii protsess, molekulyarnii mehanizm gipoksii. V kn.: Problemi gipoksii. molekulyarnie, fiziologicheskie i klinicheskie aspekti . Pod red. Luk'yanovoi L.D, Ushakova I.B. M., 2004. P. 5-31.
  6.  
  7. Luk'yanova L.D. Cignal'naya funktsiya mitohondrii pri gipoksii i adaptatsii . Patogenez. 2008, N 3. P. 4-12.
  8.  
  9. Luk'yanova L.D. Sovremennie problemi adaptatsii k gipoksii. Signal'nie mehanizmi i ih rol' v sistemnoi regulyatsii . Patol. fiziologiya i eksperim.. terapiya. 2011, N 1. P. 3-19.
  10.  
  11. Luk'yanova L.D., Germanova E.L., Tsibina T.A., Chernobaeva G.N. Energotropnoe deistvie suktsinatsoderzhashchih proizvodnih 3-oksipiridina . Byul. eksperim. biologii i meditsini. 2009. 148(10). P. 388-392.
  12.  
  13. Luk'yanova L.D, Germanova E.L., Kopaladze R.A.. Zakonomernosti formirovaniya rezistentnosti organizma pri raznih rezhimah gipoksicheskogo prekonditsionirovaniya. rol' gipoksicheskogo perioda i reoksigenatsii . Tam zhe. 2009. 147(4). P. 380-384.
  14.  
  15. Luk'yanova L.D., Dudchenko A.M., Tsibina T.A., Germanova E.L., Tkachuk E.N., Erenburg I.V. Deistvie interval'noi normobaricheskoi gipoksii na kineticheskie svoistva mitohondrial'nih fermentov . Tam zhe. 2007, N 12. P.644-651.
  16.  
  17. Luk'yanova L.D., Kirova Yu.I. Vliyanie gipoksicheskogo prekonditsionirovaniya na svobodnoradikal'nie protsessi v tkanyah kris s razlichnoi tolerantnost'yu k gipoksii . Tam zhe. 2011. 151(3). P. 263-267.
  18.  
  19. Luk'yanova L.D., Kirova Yu.I., Sukoyan G.V. Signal'nie mehanizmi adaptatsii k gipoksii i ih rol' v sistemnoi regulyatsii . Biol. membrani. 2012, N 4. P. 238-252.
  20.  
  21. Luk'yanova L.D., Sukoyan G.V, Kirova Yu. I. O roli provospalitel'nih faktorov, NO i nekotorih pokazatelei lipidnogo obmena v formirovanii srochnoi adaptatsii k gipoksii i akkumulyatsii HIF-1α . Byul. eksperim. biologii i meditsini. 2012. 11. P. 510-514.
  22.  
  23. Maevskii E.I., Rozenfel'd A.S., Grishina E.V., Kondrashova M.N. Korrektsiya metabolicheskogo atsidoza putem podderzhaniya funktsii mitohondrii. Pushchino, 2001. PubMed
  24.  
  25. Agani F. H., Pichiule P., Chavez J.C., La Manna J.C. The role of Mitochondria in the regulation of Hypoxia-inducible Factor 1 Expression during Hypoxia . JBC. 2000. 275(46). p. 35863-35867. CrossRef PubMed
  26.  
  27. Agani F. H., Puchowicz M., Chavez J.C., Pichiule P., LaManna J. Inhibitors of mitochondrial complex I attenuate the accumulation of hypoxia-inducible factor-1 during hypoxia in Hep3B cells . Compar. Biochem. and Physiol. 2000. 132(1). p. 107-109. CrossRef.1016/S1095-6433(01)00535-9
  28.  
  29. Agani F.H., Pichule P., Chavez C., LaManna J.C. Inhibitors of mitochondrial complex I attenuate the accumulation of hypoxia-inducible factor-1 during hypoxia in Hep3B cells . Compar. Biochem. Physiol. Part A. 2002. 132(1). p. 107-109. CrossRef.1016/S1095-6433(01)00535-9
  30.  
  31. Aithal H.N, Ramasarma T. Activation of liver succinate dehydrogenase in rats exposed to hypobaric conditions . Biochem J. 1969. 115(1). p. 77-83. CrossRef PubMed PubMedCentral
  32.  
  33. Baumbach L., Leyssac P.P., Skinner S.L. Studies on rennin release from isolated superfused glomeruli. effects of temperature, urea, oubain and ethacrynic acid . J. Physiol. 1976. 258. p. 243-256. CrossRef PubMed PubMedCentral
  34.  
  35. Baysal B.E. On the assotiation of succinate dehydrogenese mutations with hereditary paraganglion . Trends Endocrinil. Metab. 2003. 14. p. 453-459. CrossRef PubMed
  36.  
  37. Brandt U. Proton translocation by membrane-bound NADH-ubiquinone oxidoreductaise (complex I) through redox-gated ligand conduction . Biochem. Biophys. Acta. 1997. 1318. p. 79-91. CrossRef.1016/S0005-2728(96)00141-7
  38.  
  39. Briere J-J., Chretien D., Benit P., Rustin P. Respiratory chain defects. what do we know for sure about their consequences in vivo . BBA. 2004. 1659. p. 172-177. CrossRef
  40.  
  41. Brunk U.T., Terman A. The mitochondrial-lysosomal axis theory of aging . Eur. J. Biochem. 2002. 269. p. 1996-2002. CrossRef PubMed
  42.  
  43. Butow R.A., Avadhani N.G. Mitochondria signaling . The retrograde response. Molecular Cell. 2004. 14(1). p. 1-15. CrossRef.1016/S1097-2765(04)00179-0
  44.  
  45. Cascarano J., Ades I.Z., O'Conner J.D. Hypoxia. a succinate-fumerate electron shuttle between peripheral cells and lung . J Exp Zool. 1976. 198(2). p. 149-153. CrossRef PubMed
  46.  
  47. Chandel N.S., Schumacker P.T. Cell depleted of mitochondrial DNA (ρº) yield insight into physiological mechanisms . FEBS Lett. 1999. 454. p. 173-176. CrossRef.1016/S0014-5793(99)00783-8
  48.  
  49. Chandel N.S., Schumacker P.T. Cellular oxygen sensing by mitochondria. old questions, new insight . J. Amer. Physiol. 2000. 88. p. 1880-1889. CrossRef
  50.  
  51. Chavez J.C., Agani F., Pichule P., LaManna J.C. Expression of hypoxia-inducible factor-1α in the brain of rats during chronic hypoxia . Ibid. 2000. 89(5). p. 1937- 1942. CrossRef
  52.  
  53. Correa P.R., Kruglov E.A, Thompson M., Leite M.F., Dranoff J.A., Nathanson M.H. Succinate is a paracrine signal for liver damage . J. Hepatology. 2007. 47. p. 262-269. CrossRef PubMed PubMedCentral
  54.  
  55. Das J. The role of mitochondrial respiration in physiological and evolutionary adaptation . Bioessays. 2006. 28(9). p. 890-901. CrossRef PubMed
  56.  
  57. Da Silva M.M., Sartori A., Belisle E., Kowaltowsky A.J. Ischemic preconditioning inhibits mitochondrial respiration, increase H2O2 release, and enhances K+ transport . Amer. J. Physiol. Heart Circ. Physiol. 2003. 285. P. 154-162. CrossRef PubMed
  58.  
  59. Devin A., Rigoulet M. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells . Amer. J. Physiol. Cell Physiol. 2007. 292(1). p. 52-58. CrossRef PubMed
  60.  
  61. Di Lisa F., Ziegler M. Pathophysiological revelance of mitochondria in NAD+ metabolism . FEBS Lett. 2001. 492. p. 4-8. CrossRef.1016/S0014-5793(01)02198-6
  62.  
  63. Duchen M.R. Roles of Mitochondria in Health and Disease. Diabetes. 2004. 53. p. 96-102. CrossRef
  64.  
  65. Feldkamp T., Kribben A., Roeser N.F., Senter R.A., Kemner S., Venkatachalam M.A., Nissim I., Weinberg J.M. Preservation of complex I function during hypoxiareoxygenation-induced mitochondrial injury in proximal tubules . Amer. J. Renal. Physiol. 2004. 286(4). p. 749-759.
  66.  
  67. Fiermonte G. Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier. evolution of the carrier family . Bioch. J. 1999. 344. p. 953-960. CrossRef
  68.  
  69. Felty Q., Roy D. Estrogen, mitochondrea, and growth of cancer non cancer cells . J. Carcinogenesis. 2005. 4, N 1. p. 1-34. CrossRef PubMed PubMedCentral
  70.  
  71. Genova M.I., C. Casteluccio, R. Fato, G. Parenti-Castelli, M. Merlo-Pich, G. Formiggini, C. Bovina, M. Marchetti, G. Lenaz. Major changes in Complex I activity in mitochondrian from aged rats may not be detected by direct assay of NADH-coenzymeQ reductase . Biochem. J. 1995. 311. p. 105-109. CrossRef PubMed PubMedCentral
  72.  
  73. Gnaiger E. Mitochondrial Physiology. The many Faces and functions of on organelle. MiP . Austria, 2005. PubMed
  74.  
  75. Goldberg N. D., Passonneau J. V., Lowry O.H. Effects of Changes in Brain Acid Cycle Intermediates . J. Biol. Chem. 1966. 241. p. 3997-4003. PubMed
  76.  
  77. Grai M.W., Burger G., Lang B.F. Mitochondrion evolution . Science. 1999. 283. P. 1467- 1481.
  78.  
  79. Gullans, S. R., Kone, B. C., Avison, M. J., Giebisch, G. Succinate alters respiration, membrane potential, and intracellular K+ in proximal tubule . Amer. J. Physiol. 1988. 55. p. F1170-F1177.
  80.  
  81. Gutman M. Modulation of mitochondrial succinate dehydrogenese activity, mechanism and function. Mol . Cell Biochem. 1978. 20. p. 41-60. CrossRef PubMed
  82.  
  83. Hakak Y., Lehmann-Bruinsma K., Phillips Sh., Le Th., Llaw Ch., Connolly DT., Behan D.P.The role of the GPR91 ligand succinate in hematopoiesis . J. Leukoc. Boil. 2009. 85. p. 229-243. CrossRef PubMed
  84.  
  85. He W., Miao F.J., Lin D.C. Citric acid cycle intermediates as ligands for orphan-G-protein-coupled receptors . Nature. 2004. 429. p. 188-193. CrossRef PubMed
  86.  
  87. Hems, D. A., Brosnan, J. T. Effects of ischaemia on content of metabolites in rat liver and kidney in vivo . Biochem. J. 1970. 120. p. 105-111. CrossRef PubMed PubMedCentral
  88.  
  89. Hewitson K. S., Lienard B. M., McDonough M. A., Clifton I. J., Butler D., Soares A. S., Oldham N.J., McNeill L.A., Schofield C.J. Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarbonic acid cycle intermediates . J. Biol Chem. 2007. 282(5). p. 3293-3230. CrossRef PubMed
  90.  
  91. Hochachka P. W., Dressendorfer R. H. Succinate accumulation in man during exercise . Eur. J. Appl. Physiol. Occup. Physiol. 1976. 35. p. 235-242. CrossRef PubMed
  92.  
  93. Hochachka P.W., Somero G.N. Biochemical Adaptation Mechanism and Process in Physiological Evolution . New York. Oxford University Press, 2001.
  94.  
  95. Hohl C., Oestreich R., Rösen P., Wiesner R., Grieshaber M. Evidence for succinate production by reduction of fumarate during hypoxia inisolat adult rat heart cells . Arch Biochem, and Biophys. 1987. 59(2). P. 527-535. CrossRef.1016/0003-9861(87)90519-4
  96.  
  97. Kermorvant-Duchemin E., Sapieha P., Sirinyan M., Beauchamp M., Checchin D., Hardy P., Sennlaub F., Lachapelle P., Chemtob S. Understanding ischemic retinopathies. emerging concepts from oxygen-induced retinopathy . Doc Ophthalmol. 2010. 120. P. 51-60. CrossRef PubMed
  98.  
  99. Kim J-W., Tchernyshyov I., Semenza G. L., Dang C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase. A metabolic switch required for cellular adaptation to hypoxia . Cell Metabolism. 2006. 3(3). P. 150-151. CrossRef PubMed
  100.  
  101. King A., Selak M. A., Gottlieb E. Succinate dehydrogenase and fumarate hydratase. linking mitochondrial dysfunction and cancer . Oncogene. 2006. 25(34). P. 4675-4682. CrossRef PubMed
  102.  
  103. Kolvunen P., Hirsila M., Remes A.M., Hassinen I.E., Kivirikko K.I., Myllyharju J. Inhibition of hypoxia-inducible factor (HIF) hydrolases by citric acid cycle intermediates. possible links between cell metabolism and stabilization of HIF. J Biol Chem. 2007. 82(7). P. 4524-4532. CrossRef PubMed
  104.  
  105. Komaromy-Hiller G., Sundquist P.D., Jacobsen L.J., Nuttall K.L. Serum succinate by capillary zone electrophoresis. marker candidate for hypoxia . Ann Clin Lab Sci. 1997. 27(2). P. 163-168. PubMed
  106.  
  107. Kondrashova M. N. The formation and utilization of succinate in mitochondria as a control mechanism of energization and energy state of tissue. In: Chance B. (Ed.). Biological and Biochemical Oscillators . New York: Acad. Press. 1993. P. 373-397.
  108.  
  109. Kondrashova M.N., Doliba N.M. Polarografiphic observation of substrate-level phosphorylation and its stimulation by acetylcholine . FEBS Lett. 1989. 243. P. 153-155. CrossRef.1016/0014-5793(89)80119-X
  110.  
  111. Kunz W.S. Kudin A.P., Vielhaber S., Blumke I. Mitochondrial complex I deficiency in epileptic focus of patients with temporal lode epilepsy . Ann. Neurol. 2000. 48. P. 766-773. CrossRef.1002/1531-8249(200011)48:5<766::AID-ANA10>3.0.CO;2-M
  112.  
  113. Kushnir, M. M., Komaromy-Hiller, G., Shushan, B., Urry, F. M., Roberts, W. L. Analysis of dicarboxylic acids by tandem mass spectrometry.High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine . Clin. Chem. 2001. . P. 1993-2002. PubMed
  114.  
  115. Kusnetsov A.V., Schneeberger S., Seiler R., Brandacher G., Mark W., Steurer W., Sacs V., Usson Y, Margreiter R, Gnaiger E. Mitochondria. defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion . Amer. J. Heart. Circ. Physiol. 2004. 286. P. H1633-H1641. CrossRef PubMed
  116.  
  117. Lukyanova L.D. Limiting steps of energy metabolism in brain in hypoxia . Neurochem. Intern. 1988. 13(I). P. 146-147.
  118.  
  119. Lukyanova L.D. Molecular, metabolic and functional mechanisms of individual resistance to hypoxia. In. Sharma B.K., Takeda N., et al. (eds), Adaptation Biology and Medicine, Narosa Publishing House New Dehli, India. 1997. I. P. 261-272. PubMed
  120.  
  121. Lukyanova L. D. Cellular mechanism responsible for beneficial effects of hypoxic therapy. In. Adaptation Biology and Medicine. Moraveč, et al. (eds), Narosa Publishing House New Dehli, India. 2002. 3. P. 290-303.
  122.  
  123. Lukyanova L.D. Novel approaches to the understanding of molecular mechanisms of adaptation. In. Adaptation Biology and Medicine. Hargens A., Takeda N., Singal P.K. (eds). 2004.4. P. 11-22. PubMed
  124.  
  125. Lukyanova L. D., A. M. Dudchenko. Regulatory role of the adenylate pool in the formation of hepatocyte resistance to hypoxia. In. K.B. Pandolf, N. Takeda, P.K. Singal (eds.), Adaptation Biology and Medicine. Narosa Publishing House New Dehli, India. 1999. 2. P. 139-150. PubMedCentral
  126.  
  127. Lukyanova L.D., Dudchenko A.V., Tsybina T.A., Germanova E.L., Tkatchuk E.N. Mitochondrial signaling in adaptation to hypoxia. In. Adaptation Biology and Medicine. Eds Lukyanova L., Singal P., Takeda N. New Dehli, India. Narosa Publ. House. 2008. 5. P. 5-15.
  128.  
  129. Lukyanova L.D., Dudchenko A.M., Germanova E.L.,Tsybina T.A.,Kapaladse R.A., Ehrenbourg I.V., Tkatchouk E.N. Mitochondria signaling in formation of body resistance to hypoxia. Intermitten Hypoxia. from molecular mechanisms to clinical applications . Eds. Lei Xi, Serebrovskaya T. Nova Science Publishers, USA Chapter. 2009. 20. P. 423-450.
  130.  
  131. Lukyanova L. D., Germanova E. L, Kirova Yu. I. The Signal Function of Succinate and Free Radicals in Mechanisms of Preconditioning and Long-termAdaptation to Hypoxia. In. Adaptation Biology and Medicine. Cell Adaptations and Challenges. Wang P., Kuo C.-H., Takeda N. and Singal P.K. (eds). 2011. 6. P. 251-277. PubMedCentral
  132.  
  133. MacDonald M.J., Fahien L.A., Brown L.J., Hasan N.M., Buss J.D., Kendrick M. A. Perspective. emerging evidence for signaling roles of mitochondrial anaplerotic products insulin secretion . Amer. J. Physiol. Endocrinol. Metab. 2005. 288. P. E1-E15. CrossRef PubMed
  134.  
  135. Maklashinas E., Sher E., Zhou H-Z, Gray M. Effect of anoxia. reperfusion on the reversible active. de-active transition of complex I in rat hear . BBA, Bioenergetics. 2002. 1556(1). P. 6-12. CrossRef.1016/S0005-2728(02)00280-3
  136.  
  137. Mela L., Goodwin C.W., Miller L.D. In vivo control of mitochondrial enzyme concentrations and activity by oxygen . Amer. J. Physiol. 1976. 231. P. 1811-1816. CrossRef PubMed
  138.  
  139. Michiels K. Physiological and pathological responses to hypoxia . Amer. J. Pathology. 2004. 164. P. 1875-1882. CrossRef.1016/S0002-9440(10)63747-9
  140.  
  141. Murphy E. Primary and Secondary Signaling Pathways in Early Preconditioning That Converge on the Mitochondria to Produce Cardioprotection . Circulat. Res. 2004. 94. P. 7-16. CrossRef PubMed
  142.  
  143. Napolitano M., Centoze D., Gubellini P., Rossi S., Spiezia S., Bernardi G., Gulino F., Calabresi P. Inhibition of mitochondrial complex II alters strial expression of genes involved in glutamatergi signaling. possible implications for Huginton's diease . Neurobiol. Dis. 2004. 15(2). P. 407-414. CrossRef PubMed
  144.  
  145. Nichols D.G., Samantha L.B. Mitochondria and Neuronal Survival . Physiol Rev. 2000. 80(1). P. 315-360. CrossRef PubMed
  146.  
  147. Nishimura G, Proske RJm Doyama H, Higuchi M. Regulation of apoptosis by respiratory substrates . FEBS Letters. 2001. 505, N 3. P. 399-404. CrossRef.1016/S0014-5793(01)02859-9
  148.  
  149. Nowak G., Clifton G. L, Bakajsova D. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells . J. Pharmacol. Exp Therap. 2008. 324(3). P. 1155-1162. CrossRef PubMed PubMedCentral
  150.  
  151. Paddenberg R., Ishak B., Goldenberg A., Faulhammer P., Rose F., Weissmann N., Braun Dullaeus R., Kummer W. Essential role of complex II of the respiraitory chain in hypoxia-induced ROS generation in pulmonary vasculature . Amer. J. Physiol. Lung. Cell Mol. Physiol. 2003. 284. P. 1710-1719. CrossRef PubMed
  152.  
  153. Peers Ch., Kemp P.J. Acute oxygen sensing. diverse but convergent mechanisms in airway and arterial chemoreceptors . Respirat. Res. 2001. 2(3). P. 145-149. CrossRef PubMed PubMedCentral
  154.  
  155. Peter M.T. Deen and Joris H. Robben Succinate Receptors in the Kidney . J. Amer. Soc Nephrol. 2011. 22. P. 1416-1422, CrossRef PubMed
  156.  
  157. Pitkänen S., B.H. Robinson. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase . J. Clin. Invest. 1996. 98. P. 345-351. CrossRef PubMed PubMedCentral
  158.  
  159. Porwol T., Eheleben W., Brand V., Acker H. Tissue oxygen sensor function of NADPH oxidase isoforms, an unusiual cytochrome aa3 and reactive oxygen species . Respirat. Physiol. 2001. 128(3). P. 331-348. CrossRef.1016/S0034-5687(01)00310-3
  160.  
  161. Regard J.B., Sato I.T., Coughlin S.R. Anatomical profiling of G protein-coupled receptor expression . Cell. 2008. 135. P. 561-571. CrossRef PubMed PubMedCentral
  162.  
  163. Robinson B.H. Human Comlex I deficiency. Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect . Biochem. Biophys. Acta. 1998. 1364. P. 271-286. CrossRef.1016/S0005-2728(98)00033-4
  164.  
  165. Rouslin W., Millard R.W. Canine myocardial ischemia. defect in mitochondrial electron transfer complex I. J. Mol. Cell Cardiol. 1980. 12. P. 639-645. CrossRef.1016/0022-2828(80)90021-8
  166.  
  167. Rubic T., Lametschwandtner G., Hinteregger S., Kund J. (Triggering the succinate receptor GPR91 on dendritic cells enhances immunity . Nat Immunol. 2008. 9. P. 1261-1269. CrossRef PubMed
  168.  
  169. Sadek H.A., Sweda P.A., Sweda.L.I. Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition . Biochemistry. 2004. 43. P. 8494-8502. CrossRef PubMed
  170.  
  171. Sadagopan N., Roberds S.L., Major T., Preston G.M., YuY., Tones M.A. Circulating succinate is elevated in rodent models of hypertension and metabolic disease . Amer. J. Hypertens. 2007. 20. P. 1209-1215. PubMed
  172.  
  173. Sanborn T., Gavin,W., Berkowitz S., Perille T., Lesch M. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart . Amer. J. Physiol. 1979. 237. P. H535-H541. PubMed
  174.  
  175. Sapieha P., Sirinyan M., Hamel D., Zaniolo K, Joya J.-S., Cho J.-H., Honoré J.-C., Kermorvant-Duchemin E., Varma D. R., Tremblay S., Leduc M., Rihakova L., Hardy P., Klein W. H., Mu X., Mamer O., Lachapelle P., Di Polo A., Beauséjour C., Andelfinger G., Mitchell G., Sennlaub F., Chemtob S., The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis . Nat. Med. 2008. 14. P. 1067-1076. CrossRef PubMed
  176.  
  177. Sardanelli A.M., Papa S. Phosphorylationof an 18 kDa subunit of bovine Heart complex I by camp dependent kinase . FEBS Lett. 1996. 379. P. 299-301. CrossRef.1016/0014-5793(95)01532-9
  178.  
  179. Sekine T., Miyazaki H., Endou H. Molekular physiology of renal organic anion transporters . Amer. J. Renal Physiol. 2006. 290. P. F251-F261. CrossRef PubMed
  180.  
  181. Selak M.A, Armour S.M., McKenzie E. D. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-prolyl hydroxylase . Cancer Cell. 2005. 7. P. 77-85. CrossRef PubMed
  182.  
  183. Semenza G.L. Signal transduction to hypoxia-inducible factor 1 . Bioch. Pharmacol. 2002. 64. P. 993-998. CrossRef.1016/S0006-2952(02)01168-1
  184.  
  185. Semenza G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1 . Biochem J. 2007. 405(1). P. 1-9. CrossRef PubMed
  186.  
  187. Semenza G.L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis . Blood. 2009. 114(10). P. 2015-2019. CrossRef PubMed
  188.  
  189. Semenza G.L., Wang G. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation . Mol.Cell Biol. 1992. 12. P. 5447-5454. CrossRef PubMed PubMedCentral
  190.  
  191. Stroka D.M., Burkhardt T., Desballerts I. HIF-1 is expressed in normoxia tissue and displays an organ-specific regulation under systemic hypoxia . FASEB J. 2001. 15. P. 2445-2453. CrossRef
  192.  
  193. Taegmeyer H. Metabolic responses to cardiac hypoxia. increased production of succinate by rabbit papillary muscles . Circ Res. 1978. 43. P. 808-815. CrossRef
  194.  
  195. Toma I., Kang J.J., Sipos A., Vargas S., Bansal E., Hanner F., Meer E., Peti-Peterdi J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney . J. Clin. Invest. 2008. 118. P. 2526-2534. CrossRef
  196.  
  197. Wang G., Semenza G.L. Characterization of hypoxia-inducible factor I and regulation of DNA binding activity by hypoxia . J. Biol Chem; 1993. 268. P. 21513-21518. PubMed
  198.  
  199. Weinberg J.M., Venkatachalm M.A, Nancy F. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury . Amer. J. Renal. Physiol. 2000. 279. P. F927-F943.
  200.  
  201. Weinberg J.M.,Venkatachalm M.A., Nancy F. Mitochondrial disfunction during hypoxia. reoxigenation and its correction by anaerobic metabolism of citric acid cycle intermediates . PNAS. 2000. 97(3). P. 2826-2831. CrossRef PubMed
  202.  
  203. Vargas S.L., Toma I., Kang J.J., Meer E.J., Peti-Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release . J. Amer. Soc. Nephrol. 2009. 20. P. 1002-1011. CrossRef PubMed PubMedCentral
  204.  
  205. Vaux E.C., Metzen E., Yeates K.M., Ratcliffe P.J. Regulation of hypoxia-inducible factor is reserved in the absence of a functioning respiratory chain . Blood. 2001. 98. P. 296-302. CrossRef PubMed
  206.  
  207. Voos W., Rotgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis . BBA. 2002. 1592. P. 51-62. CrossRef.1016/S0167-4889(02)00264-1
  208.  
  209. Zoccarato F., Cavallini L., Bortolami S., Alexandre A. Succinate modulation of H2O2 release at NADH.ubiquinone oxidoreductase (Complex I) in brain mitochondria . Biochem J. 2007. 406(1). P.125-129. CrossRef PubMed PubMedCentral
  210.  
  211. Zhu H., Bunn F. Oxygen sensing and signaling. impact on regulation of physiologically important genes . Respir Physiol. 1999. 2. P. 239-247. CrossRef.1016/S0034-5687(99)00024-9
  212.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.