Phenotypic characteristics of factor expression induced by hypoxia and redox status of the rat neocortical cells at different stages of adaptation to hypoxia
Kirova IuI, Germanova ÉL, Luk'ianova LD
Institute of General Pathology and Pathophysiology, Russian Academia Medical Sciences, Russia
DOI: https://doi.org/10.15407/fz59.06.098
Abstract
Hypoxic preconditioning induces two-phase increase of HIF-1alpha expression in the neocortex of low-resistance rats. The first, brief phase appears after each hypoxic episode and rapidly disappears in normoxic conditions. The second increase in of HIF-1alpha expression occurs in 24 hours after the hypoxic episode. The phase-nature of HIF-1alpha expression corresponds to the dynamics of urgent and long-term resistance in low-resistance rats, which suggests the HIF-1alpha involvement in mechanisms of urgent and long-term adaptation. It was found that in the mode of preconditioning, hypoxic treatments mobilized the anti-oxidant system (activated Cu, Zn-SOD) and had no effect on the intensity of lipid peroxidation processes in neocortex (INH, 10% O2) or even decreased the content of lipid peroxidation products and oxidized glutathione in neocortical cells in the early post-hypoxic period (HBH-5000, 10.5% O2). Thus, ROS do not play a key role in the induction of HIF-1alpha expression and fast-response/long-term adaptation to O2 deficiency in hypoxia-sensitive animals. In high-resistance rats, hypoxia preconditioning does not influence the HIF-1alpha protein expression and the adaptation. Severe hypoxic modes (HBH-7000, 8% O2) caused activation of lipid peroxidation processes in neocortex of hypoxia-sensitive rats. With the pro-oxidant systems dominating over the anti-oxidant ones, the neocortical expression of HIF-1alpha was found to decrease, which was accompanied by the impairment of the mechanisms of fast-response/long-term adaptation to hypoxia.
Keywords:
HIF-1a, neocortex, preconditioning hypoxia,severe hypoxia, high-resistance rats, low-resistance rats, urgentand long-term adaptation to hypoxia, lipid peroxidation, lipidhydroperoxides, conjugated dienes, thiobarbituric acid reactivesubstances, oxidized glutathione
References
- Kirova Yu.I., Germanova E.L., Luk'yanova L.D. Fenotipicheskie osobennosti dinamiki soderzhaniya HIF-1av neokortekse kris pri razlichnih rezhimah gipoksii. Byul. eksperim. biologii i meditsini. 2012. 154,N 12. P. 681-686.
- Luk'yanova L.D. Sovremennie problemi adaptatsii kgipoksii. Signal'nie mehanizmi i ih rol' v sistemnoi regulyatsii . Patol. fiziologiya i eksperim.terapiya. 2011. N 1. P. 3-19.
- Luk'yanova L.D., Germanova E.L., Kopaladze R.A. Zakonomernosti formirovaniya rezistentnosti organizmapri raznih rezhimah gipoksicheskogo prekonditsionirovaniya: rol' gipoksicheskogo perioda i reoksigenatsii . Byul. eksperim. biologii i meditsini. 2009. 147, N 4. P. 380-384.
- Luk'yanova L.D., Dudchenko A.M. Triggernaya rol'energeticheskogo obmena v kaskade funktsional'no-metabolicheskih narushenii pri gipoksii. V kn.:Problemi gipoksii: molekulyarnie, fiziologicheskiei meditsinskie aspekti . Pod. red. Luk'yanovoi L.D.,Ushakova I.B. M.: Istoki, 2004. P. 51-84.
- Luk'yanova L.D., Kirova Yu.I. Vliyanie gipoksicheskogo prekonditsionirovaniya na svobodnoradikal'nieprotsessi v tkanyah kris s razlichnoi tolerantnost'yuk gipoksii . Byul. eksperim. biologii i meditsini. 2011. 151, N 3. P. 292-296.
- Luk'yanova L.D., Kirova Yu.I., Sukoyan G.V. Signal'nie mehanizmi adaptatsii k gipoksii i ih rol' vsistemnoi regulyatsii . Biol. membrani. 2012. 29,N 4. P. 238-252.
- Chernobaeva G.N., Luk'yanova L.D. Rol' individual'noi rezistentnosti k gipoksicheskomu faktoru pripoiske antigipoksantov i otsenke effektivnosti ihdeistviyayu V kn.: Farmakologicheskaya korrektsiyagipoksicheskih sostoyanii. M., 1989. P. 160-164.
- Abramov A.Y., Scorziello A., Duchen M.R. Three distinctmechanisms generate oxygen free radicals in neurons andcontribute to cell death during anoxia and reoxygenation. J. Neurosci. 2007. 27, N 5. P. 1129-1138.
CrossRef
PubMed
- Althausen S., Mengesdorf T., Mies G. Changes in thephosphorylation of initiation factor eIF-2alpha, elongationfactor eEF-2 and p70 S6 kinase after transient focalcerebral ischaemia in mice . J. Neurochem. 2001. N 78. P. 779-787.
CrossRef
PubMed
- Bell E.L., Klimova T.A., Eisenbart J., Moraes C.T., MurphyM.P., Budinger G.R., Chandel N.S. The Qo site of the mitochondrialcomplex III is required for the transduction ofhypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007. N 177. P. 1029-1036.
CrossRef
PubMed PubMedCentral
- Boveris A., Chance B. The mitochondrial generation ofhydrogen peroxide. General properties and effect of hyperbaricoxygen . Biochem. J. 1973. N 134. P. 707-716.
CrossRef
PubMed PubMedCentral
- Bruick R.K. O2 sensing in the hypoxic response pathway:regulation of the hypoxia-inducible transcription factor. Genes & Development. 2003. N 17. P. 2614-2623.
CrossRef
PubMed
- Calvert J.W., Cahill J., Yamaguchi-Okada M., Zhang JH.Oxygen treatment after experimental hypoxia-ischemiain neonatal rats alters the expression of HIF-1a and itsdownstream target genes . J. Appl. Physiol. 2006. N 101. P. 853-865.
CrossRef
PubMed
- Dringen R., Gutterer J.M. Glutathione reductase frombovine brain . Methods Enzymol. 2002. N 348. P. 281-288.
CrossRef
- Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuousmonitoring of in vitro oxidation of human lowdensity lipoprotein . Free Radic. Res. Commun. 1989. N 6. P. 67-75.
CrossRef
PubMed
- Eyer P., Podhradsky D. Evaluation of the micromethodfor determination of glutathione using enzymatic cyclingand Ellman's reagent . Anal. Biochem. 1986. N 153. P. 57-66.
CrossRef
- Griendling K.K., Sorescu D., Lassegue B., Ushio-FukaiM. Modulation of protein kinase activity and gene expressionby reactive oxygen species and their role in vascularphysiology and Pathophysiology . Arterioscler. Thromb.Vasc. Biol. 2000. N 20. P. 2175-2183.
CrossRef
PubMed
- Haddad J.J. Antioxidant and prooxidant mechanisms inthe regulation of redox(y)-sensitive transcription factors. Cell Signal. 2002. N 14. P. 879-897.
CrossRef
- Haddad J.J., Land S.C. O2-evoked regulation of HIF-1 andNF-B in perinatal lung epithelium requires glutathionebiosynthesis . Amer. J. Physiol. Lung. Cell Mol Physiol. 2000. N 278. P. L492-L503.
CrossRef
PubMed
- Haddad J.J., Olver R.E., Land S.C. Antioxidant. prooxidantequilibrium regulates HIF-1 alpha and NF-kappa Bredox sensitivity evidence for inhibition by glutathioneoxidation in alveolar epithelial cells . J. Biol. Chem. 2000. N 275. P. 21130-21139.
CrossRef
PubMed
- Hermes-Lima M., Willmore W.G., Storey K.B. Quantificationof lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation . Free Radical Biology& Medicine. 1995. 19, N 3. P. 271-280.
CrossRef
- Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans:the central role of the HIF hydroxylase pathway . Mol.Cell. 2008. N 30. P.393-402.
CrossRef
PubMed
- Katschinski D.M., Le L., Schindler S.G., Thomas T.,Voss A.K., Wenger R.H. Interaction of the PAS B domainwith HSP90 accelerates hypoxia-inducible factor-1 alphastabilization . Cell Physiol. Biochem. 2004. N 14. P. 351-360.
CrossRef
PubMed
- Lukyanova L.D., Dudchenko A.M., Tsybina T.A., GermanovaE.L., Tkatchuk E.N. Mitochondrial signalingin Adaptation to Hypoxia. In: Adaptation Biologyand Medicine . Eds Lukyanova L.D., Takeda N., SingalP.K. Publishing House New Dehli, India, 2008. 5. P. 245-260.
PubMedCentral
- Lukyanova L.D., Germanova E.L., Kirova YuI. The SignalFunction of Succinate and Free Radicals in Mechanisms ofPreconditioning and Long-term Adaptation to Hypoxia. In: Adaptation Biology and Medicine . Eds Wang P., KuoC.-H., Takeda N., Singal P.K. Publishing House NewDehli, India, 2011. 6. P. 251-277.
PubMedCentral
- Lukyanova L.D., Germanova E.L., Kirova J.I., LyskoA.I. The signal function of succinate and free radicals inmechanisms of preconditioning and long-term adaptationto hypoxia. In: Adaptation Biology and Medicine . EdsWang P., Kuo C.-H., Takeda N., Singal P.K. PublishingHouse New Dehli, India, 2009. 1. P. 45-48.
PubMedCentral
- Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C.,Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., MaherE.R., Ratcliffe P.J. The tumour suppressor protein VHLtargets hypoxia inducible factors for oxygen-dependentproteolysis . Nature. 1999. N 399. P. 271-275.
CrossRef
PubMed
- Okawa H., Ohishi N., Yagi K. Assay for lipid peroxidesin animal tissues by thiobarbituric acid reaction . Anal.Biochem. 1979. N 95. P. 351-358.
CrossRef
- Ozdemir G., Ozden M., Maral H., Kuskay S., CetinalpP., Tarkun I. Malondialdehyde, glutathione, glutathioneperoxidase and homocysteine levels in type 2 diabeticpatients with and without microalbuminuria . Ann. Clin.Biochem. 2005. N 42. P. 99-104.
CrossRef
PubMed
- Paky A., Michael J.R., Burke-Wolin T.M., Wolin M.S.,Gurtner G.H. Endogenous production of superoxide byrabbit lungs: effects of hypoxia or metabolic inhibitors. J. Appl. Physiol. 1993. N 74. P. 2868-2874.
CrossRef
PubMed
- Semenza G.L. Targeting HIF-1 for cancer therapy . Cancer. 2003. N 3. P. 721-732.
PubMed
- Semenza G.L. Involvement of oxygen-sensing pathwaysin physiologic and pathologic erythropoiesis . Blood. 2009. 114, N 10. P. 2015-2019.
CrossRef
PubMed
- Selak M.A., Armour S.M., MacKenzie E.D., BoulahbelH., Watson D.G., Mansfeld K.D., Pan Y., Simon M.C.,Thompson C.B., Gottlieb E. Succinate links TCA cycledysfunction to oncogenesis by inhibiting HIF- prolylhydroxylase . Cancer Cell. 2005. N 7. P. 77-85.
CrossRef
PubMed
- Shringarpure R., Grune T., Mehlhase J., Davies K.J.Ubiquitin conjugation is not required for the degradationof oxidized proteins by proteasome . J. Biol. Chem. 2003. N 1. P. 311-318.
CrossRef
PubMed
- Stroka D.M., Burkhardt T., Desbaillets I. HIF-1 is expressedin normoxic tissue and displays an organ-specificregulation under systemic hypoxia . FASEB J. 2001. N 15. P. 2445-2453.
CrossRef
- Torres M., Forman H.J. Redox signaling and the MAPkinasepathways . Biofactors. 2003. N 17. P. 287-296.
CrossRef
PubMed
- Turrens J.F. Mitochondrial formation of reactive oxygenspecies . J. Physiol. 2003. N 15. P. 335-344.
CrossRef
PubMed PubMedCentral
- Tuttle S.W., Maity A., Oprysko P.R., Kachur A.V., AyeneI.S., Biaglow J.E., Koch C.J. Detection of reactive oxygenspecies via endogenous oxidative pentose phosphate cycleactivity in response to oxygen concentration . J. Biol.Chem. 2007. 282, N 51. P. 36790-36796.
CrossRef
PubMed
- Ukeda H., Maeda S., Ishii T., Sawamura M. Spectrophotometricassay for superoxide dismutase based ontetrazolium salt 3'--1--(phenylamino)-carbonyl--3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonicacid hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. 1997. N 251. P. 206-209.
CrossRef
PubMed
- Vargas S.L., Toma I., Kang J.J., Meer E.J., Peti-PeterdiJ. Activation of the succinate receptor GPR91 in maculadensa cells causes renin release . J. Amer. Soc. Nephrol. 2009. N 20. P. 1002-1011.
CrossRef
PubMed PubMedCentral
- Wang G.L., Jiang B.H., Semenza G.L. Effect of alteredredox states on expression and DNA-binding activityof hypoxia-inducible factor . Biochem. Biophys. Res.Comm. 1995. N 2. P. 550-556.
CrossRef
PubMed
- Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxiainduciblefactor 1 is a basic-helix-loop-helix-PAS heterodimerregulated by cellular O2 tension . Proc. Natl. Acad.Sci. USA. 1995. N 92. P. 5510-5514.
CrossRef
PubMed
|