Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(5): 61-70


Influence of adenosine diphosphate on respiration of rat pancreatic acinar cells mitochondria in situ

Man'ko BO, Man'ko VV.

    Ivan Franko National University of Lviv, Ukraine
DOI: https://doi.org/10.15407/fz59.05.061

Abstract

The influence ofadenosine diphosphate (ADP) on respiration of pancreatic acinar cell mitochondria in situ was studied. The model of digitonin-treated pancreatic acini was used. It was found that succinate or a mixture of pyruvate, glutamate and malate intensified respiration ofpermeabilized cells. Low ADP concentration (100 microM) did not influence the rate of oxygen uptake, whereas at higher concentration (750 microM) brief intensification of respiration was observed when using nominally Ca(2+)-free medium. When the medium with 100 nM Ca2+ was used, ADP had no effect on oxygen uptake, while the rate of respiration stimulated by a mixture of pyruvate, glutamate and malate increased. Rate of succinate-stimulated respiration did not depend on Ca2+ content in medium. The presence of ATP in the medium reduced the stimulatory effect of ADP, but increased its duration. Intensification of respiration by ADP, occurred only at elevated Ca2+ content, was not associated with oxidative phosphorylation because oligomycin did not inhibit it. The effect ofADP might be a novel "functional marker" of development of pathological processes in the mitochondria of acinar pancreacytes.

Keywords: acinar pancreacytes, mitochondria in situ, oxygenuptake, Ca2+, ADP.

References

  1. Merlavs'kii V.M., Man'ko B.O., Ikkert O.V., Man'ko V.V. Energetichni protsesi izol'ovanih gepatotsitiv za riznoi trivalosti dii insulinu . Studia Biologica. 2010. 4, N 3. P. 1522.
  2.  
  3. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition . Physiol. Rev. 1999. 79, N 4 . P. 11271155. CrossRef PubMed
  4.  
  5. Brocks D.G., Siess E.A., Wieland O.H. Validity of the digitonin method for metabolite compartmentation in isolated hepatocytes . Biochem. J. 1980. 188. P. 207212. CrossRef  
  6. Carpenter J.H. New measurements of oxygen solubility in pure and natural water . Limnol. Oceanogr. 1966. 11. P. 264277. CrossRef  
  7. Chance B., Williams G.R. Respiratory enzymes in oxidative phosphorylation. The steady state . J. Biol. Chem. 1955. 217. P. 409427.
  8.  
  9. Colbeau A., Nachbaur J., Vignais P.M. Enzymic characterization and lipid composition of rat liver subcellular membranes . Biochim. Biophys. Acta. 1971. 249,N 2. P. 462492.
  10.  
  11. Gerasimenko J.V., Sherwood M., Tepikin A.V., Petersen O.H., Gerasimenko O.V. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area . J. Cell Sci. 2006. 119. P. 226238. CrossRef PubMed
  12.  
  13. Gerasimenko Yu., Lur G., Sherwood M.W., Ebisui E., Tepikin A.V., Mikoshiba K., Gerasimenko O.V., Petersen O.H. Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors . PNAS. 2009. 106, N 26. P. 1075810763. CrossRef PubMed PubMedCentral
  14.  
  15. Hems R., Stubbs M., Krebs H.A. Restricted permeability of rat liver for glutamate and succinate . Biochem. J. 1968. 107. P. 807815. CrossRef      
  16. Horbay R.O., Manko B.O., Manko V.V., Lootsik M.D., Stoika R.S. Respiration characteristics of mitochondria in parental and giant transformed cells of the murine NemethKellner lymphoma . Cell Biol. Int. 2012. 36, N 1. P. 7177. CrossRef PubMed
  17.  
  18. Howell J.A., Matthews A.D., Swanson K.C., Harmon D.L., Matthews J.C. Molecular identification of highaffinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas . J. Anim. Sci. 2001. 79. P. 13291336. CrossRef  
  19. Kosowski H., Schild L., Kunz D. Halangk W. Energy metabolism in rat pancreatic acinar cells during anoxia and reoxygenation . Biochim. Biophys. Acta. 1998. 1367. P. 118126.
  20.  
  21. Kuznetsov A.V., Veksler V., Gellerich F.N., Saks V., Margreiter R., Kunz W.S. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells . Nat. Protoc. 2008. 3, N 6. P. 965976. CrossRef PubMed
  22.  
  23. Manko B.O., Klevets. M.Y., Manko V.V. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions . Cell Biochem. Funct. 2013. 31, N 2. P. 115121. CrossRef PubMed
  24.      
  25. Nishikawa M., Nojima Sh., Akiyama T. Sankawa U., Inoue K. Interaction of digitonin and its analogs with membrane cholesterol . J. Biochem. 1984. 96. P. 12311239. CrossRef  
  26. Odinokova I.V., Sung K.F., Mareninova O.A., Hermann K., Evtodienko Y., Andreyev A., Gukovsky I., Gukovskaya A.S. Mechanisms regulating cytochrome c release inpancreatic mitochondria . Gut. 2009. 58. P. 431442. CrossRef PubMed PubMedCentral
  27.  
  28. Saks V.A., Veksler V.I., Kuznetsov A.V., Kay L., Sikk P., Tiivel T., Tranqui L., Olivares J., Winkler K., Wiedemann F., Kunz W.S. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo . Mol. Cell. Biochem. 1998. 184. P. 81100.
  29.  
  30. Schulz H.U., Pross M., Meyer F., Matthias R., Halangk W. Acinar cell respiration in experimental acute pancreatitis . Shock. 1995. 3, N 3. P. 184188. CrossRef  
  31. Streb H., Schulz I. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas . Amer. J. Physiol. 1983. 245. P. G347G357.
  32.  
  33. Voronina S., Sukhomlin T., Johnson P.R., Erdemli G., Petersen OH., Tepikin A. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells . J. Physiol. 2002. 539, N 1. P. 4152. CrossRef PubMedCentral
  34.  
  35. Voronina S.G., Barrow S.L., Gerasimenko O.V., Petersen O.H., Tepikin A.V. Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinarcells: comparison of different modes of evaluating ??m. J. Biol. Chem. 2004. 279, N 26. P. 2732727338. CrossRef PubMed
  36.  
  37. Voronina S.G., Barrow S.L., Simpson A.W.M., Gerasimenko O.V., da Silva Xavier G., Rutter G.A., Petersen O.H., Tepikin A.V. Dynamic changes in cytosolic andmitochondrial ATP levels in pancreatic acinar cells . Gastroenterology. 2010. 138. P. 19761987. CrossRef PubMed PubMedCentral
  38.  
  39. Williams J.A., Korc M., Dormer R.L. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini . Amer. J. Physiol. 1978. 235, N 5. P. 517524.
  40.  
  41. Zhao C., Wilson M.C., Schuit F. Halestrap A.P., Rutter G.A. Expression and distribution of lactate. monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas . Diabetes. 2001. 50. P. 361366. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.