Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(5): 31-40


The involvement of lidocaine and tetrodotoxin-sensitive current in the generation of action potentials with low DV/DT max in the cells of the mouse sinoauricular region

Golovko VA, Lebedeva EA

    Institute of Physiology, Komi Science Centre, the UralaBranch of the Russian Academy of Sciences, Syktyvkar, Russia
DOI: https://doi.org/10.15407/fz59.05.031

Abstract

The effects of the specific blockers of the inward Na-current --lidocaine and tetrodotoxin (TTX) were studied with microelectrode technique on the spontaneously beating strips of the mouse sinoauricular (SA) area. Lidocaine (25 microM) and TTX (25 pM) increased the duration of the peak of the action potentials (AP) of true pacemaker cells by extending the plateau phase (phase 2 or APD 20), slowing the dV/dt max from 2.6 +/- 0.8 V/s (n = 25) to 1.4 +/- 0.3 V/s (n = 5, p < 0.05) and reducing the velocity of diastolic depolarization (DD) by 20%. The extend of the dV/dt max value decline depended on the lidocaine concentration. The experimental data fully meted to Hill equation. The lidocaine threshold concentration was 20 microM. The lidocaine effective concentration which decreased dV/dt max by 50% (EC50) was 35 microM. The TTX (25 microM) exposure decreased the dV/dt max from 1.6 V/s to 0.8 V/s and DD velocity slowed by 49%. It should be noted that TTX also increased the duration of APD20. Our data show that dV/ dt max of the true pacemaker cells was reduced by 35-45% after exposure to TTX and lidocaine. This fact confirms the involvement of Na-current in the generation of the upstroke true pacemaker cells AP.

Keywords: Transmembrane action potential; true pacemake,sinoauricular node; lidocaine; tetrodotoxin; mouse.

References

  1. Golovko V.A. Vklad medlennogo natrievogo toka v me-hanizm depolyarizatsii sarkolemmi kletok istinnogo voditelya ritma serdtsa krolika . Ros. fiziol. zhurn. im. I.M. Sechenova. 2009. 95, N 4. P. 387-397.
  2.  
  3. Gonotkov, M.A., Golovko V.A. Otritsatel'nii hronotropnii effekt ionov tseziya na generatsiyu transmem-brannih potentsialov kletok sinusno-predserdnogouzla u mishi . Byul. eksperim. biologii i meditsini.2011. 152, N 8. P. 128-131.
  4.  
  5. Baruscotti M., DiFrancesco D., Robinson R.B. A TTXsensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells . J.Physiol. 1996. 492. P. 21-30. CrossRef PubMed PubMedCentral
  6.  
  7. Bosnjak Z.J., Stowe D.F., Kampine J.P. Comparison of lidocaine and bupivacaine depression of sinoatrial nodal activity during hypoxia and acidosis in adult and neonatal guinea pigs . Anesth Analg. 1986. 65. P. 911-917. CrossRef PubMed
  8.  
  9. Cho H.S, Takano M., Noma A. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node . J. Physiol. 2003. 550. P. 169-180. CrossRef PubMed PubMedCentral
  10.  
  11. Derangeon M., Montnach J., Baro I., Charpentier F. Mouse models of SCN5A-related cardiac arrhythmias . Front Physiol. 2012. 3. P. 1-4. CrossRef PubMed PubMedCentral
  12.  
  13. Kharche S., Yu J., Lei M., Zhang H. A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases . Amer. J. Physiol. Heart Circulat. Physiol. 2011. 301. P. 945-963. CrossRef PubMed PubMedCentral
  14.  
  15. Kodama I., Nikmaram M.R., Boyett M.R., Suzuki R., Honjo H., Owen J.M. Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node . Amer. J. Physiol. 1997. 272. P. 2793-2806.
  16.  
  17. Kurata Y., Matsuda H., Hisatome I., Shibamoto T. Regional difference in dynamical property of sinoatrial node pacemaking: role of Na+ channel current . Biophys J.2008 95. P. 951-977.  CrossRef PubMed PubMedCentral
  18.  
  19. Lei M., Jones S.A., Liu J., Lancaster M. K., Fung S.S., Dobrzynski H., Camelliti P., Maier S.K., Noble D., Boyett M.R. Requirement of neuronaland cardiac-type sodium channels for murine sinoatrial node pacemaking . J. Physiol. 2004. 559. P. 835-848. CrossRef PubMed PubMedCentral
  20.  
  21. Letienne R., Vie B., Le Grand B. Pharmacological characterisation of sodium channels in sinoatrial node pacemaking in the rat heart . Eur. J. Pharmacol. 2006. 530. P. 243-249. CrossRef PubMed
  22.  
  23. Liu J., Dobrzynski H., Yanni J., Boyett M.R., Lei M. Organisation of the mouse sinoatrial node: structure and expression of HCN channels . Cardiovascular. Res.-2007. 73. P. 729-738. CrossRef PubMed
  24.  
  25. Maier S.K., Westenbroek R.E., Yamanushi T.T., Dobrzynski H., Boyett M.R., Catterall W.A., Scheuer T. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node . Proc. Natl. Acad. Sci. USA. 2003. 100. P. 3507-3512. CrossRef PubMed PubMedCentral
  26.  
  27. Maltsev V.A., Lakatta E.G. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function . Cardiovascular. Res. 2008. 77, N 2. P. 274-284. CrossRef PubMed
  28.  
  29. McNulty M.M., Edgerton G.B., Shah R.D., Hanck D.A., Fozzard H.A., Lipkind G.M. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels . J. Physiol. 2007. 581(Pt 2) P. 741-755. CrossRef PubMed PubMedCentral
  30.  
  31. Protas L., Oren R. V., Clancy C. E., Robinson R. B.Age-dependent changes in Na current magnitude and TTX-sensitivity in the canine sinoatrial node . J. Mol Cell Cardiol. 2010. 48. P. 172-180. CrossRef PubMed PubMedCentral
  32.  
  33. Rocchetti M., Armato A., Cavalieri B., Micheletti M., Zaza A. Lidocaine inhibition of the hyperpolarization-activated current (I(f)) in sinoatrial myocytes . J. Cardiovascular.Pharmacol. 1999. 34. P. 434-439. CrossRef PubMed
  34.  
  35. Tellez J. O., Dobrzynski H., Greener, I. D., Graham G. M., Laing E., Honjo H., Hubbard S. J., Boyett M. R., Billeter R. Differential Expression of Ion Channel Transcripts in V.A. Golovko, E.A. Lebedeva 40 ISSN 0201-8489 Fiziol. zhurn., 2013, T. 59, N 5Atrial Muscle and Sinoatrial Node in Rabbit . Circulat.Res. 2006. 99. P. 1384-1393.
  36.  
  37. Temple J., Frias P., Rottman J., Yang T., Wu Y., Verheijck E.E., Zhang W., Siprachanh C., Kanki H., Atkinson J.B., King P., Anderson M.E., Kupershmidt S., Roden D.M. Atrial fibrillation in KCNE1-null mice . Ibid. 2005. 97, N 1. P. 62-69. CrossRef  
  38. Verkerk A.O., Wilders R., van Borren M.M., Peters R.J.G., Broekhuis E., Lam K., Coronel R., de Bakker J.M., Tan H.L. Pacemaker current (If) in the human sinoatrial node. Eur. Heart. J. 2007. 28. P. 2472-2478. CrossRef PubMed
  39.  
  40. Viswanathan S., Burch J.B., Fishman G.I., Moskowitz I.P., Benson D.W. Characterization of sinoatrial node in four conduction system marker mice. J. Mol Cell Cardiol. 2007. 42, N 5. P. 946-953. CrossRef PubMed PubMedCentral
  41.  
  42. Zhang H., Holden A.V., Kodama I., Honjo H., Lei M., Varghese T., Boyett M.R. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrialnode . Amer. J. Physiol Heart. Circ ulat. Physiol.2000. 279. P. 397-421.
  43.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.