Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(4): 56-62


Functional morphology of nucleated erythrocytes during hypoxia (in vitro experiments)

Andrieieva OIu, Soldatov OO

    A.O. Kovalevsky Institute of Biology of the Southern Seas,National Academy of Sciences of Ukraine, Sevastopol, Ukraine
DOI: https://doi.org/10.15407/fz59.04.056

Abstract

Changes in morphologic and functional properties of nucleic erythrocytes were observed during experimental hypoxia in vitro. It has been shown that erythrocytes volume and nuclei volume decrease in oxygen concentration of 1.76-4.03 mgO2 x l(-1) on 1.5-5.0% and 9-15% respectively. Both indexes increased significantly in case of deep hypoxia (0.57-1.76 mgO2 x l(-1)) when nucleo-cytoplasmic ratio doesn't change. By this time erythrocytes shape modifies into extended ellipse because of elongation of large axis of cell (C1) and its width (h). Along with increase in nuclei volume the enhancement of SYBR Green I fluorescence is observed; the intensity correlates with volume magnitude of this cell structure (R2 = 0.81).

Keywords: hypoxia, in vitro experiments, nucleated erythrocytes, cell morphology, cytometry

References

  1. Novitskaya V.N., Soldatov A.A., Parfenova I.A. Funktsi onal'naya morfologiya, sopryazhenie membrannih i metabolicheskih funktsii u yadernih eritrotsitov Scorpaena porcus L. v usloviyah eksperimental'noi gipoksii . Dop. NAN Ukraini. 2011. N 10. P. 131-136.
  2.  
  3. Parfenova I.A., Soldatov A.A. Funktsional'naya morfologiya tsirkuliruyushchih eritrotsitov bichka-kruglyaka v usloviyah eksperimental'noi gipoksii . Morskoi ekol. zhurn. 2011. 10, N 2. P. 59-67.
  4.  
  5. Soldatov A.A., Rusinova O.S., Trusevich V.V., Zvezdina T. F. Vliyanie gipoksii na biohimicheskie pokazateli eritrotsitov skorpeni . Ukr. biohim. zhurn. 1994. 66, N 5. P. 115-118.
  6.  
  7. Tashke K. Vvedenie v kolichestvennuyu tsito-gistologicheskuyu morfologiyu. Buharest: Izd-vo Akademii Respubliki Ruminii, 1980. 291 p. Chizhevskii A.L. Strukturnii analiz dvizhushcheisya krovi. M.: Izd-vo AN SSSR, 1959. 474 p.
  8.  
  9. Adragna N.C., Di Fulvio M., Lauf P.K. Regulation of K-Cl cotransport: from function to genes . J. Membrane Biol. 2004. 201. P. 109-137. CrossRef PubMed
  10.  
  11. Borgese F., Garcia-Romeu F. Motais R. Control of cell volume and ion transport by ?-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri . J. Physiol. 1987. 382. P. 123-144. CrossRef PubMed PubMedCentral
  12.  
  13. Boutilier R.G., Ferguson R.A. Nucleated red cell function: metabolism and pH regulation . Can. J. Zool. 1989. 67, N 12. P. 2986-2993. CrossRef  
  14. Cerca F., Trigo G., Correia A., Cerca N., Azeredo J, Vilanova M. SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry . Can. J. Microbiol. 2011. 57, N 10. P. 850-856.  CrossRef PubMed
  15.  
  16. Cossins A. R., Gibson J. S. Volume-sensitive transport systems and volume homeostasis invertebrate red blood cells . J. Exp. Biol. 1997. 200. P. 343-352.  PubMed
  17.  
  18. Gilles C., Motais R. Effect of catecholamines on deformability of red cells from trout: relative roles of cyclic AMP and cell volume . J. Physiol. 1989. 412. P. 321-332. CrossRef  
  19. Girish V., Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ . Indian J. Cancer. 2004. 41, N 1. P. 41-47.
  20.  
  21. Hallman T. M., Rojas-Vargas A. C., Jones D. R., Richards J. G. Differential recovery from exercise and hypoxia exposure measured using 31Pand 1H-NMR in white muscle of the common carp Cyprinus carpio . J. Exp. Biol. 2008. 211. P. 3237-3248. CrossRef PubMed
  22.  
  23. Houchin D.N., Munn J.I., Parnell B.L. A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area . Blood. 1958. 13. P. 1185-1191. PubMed
  24.  
  25. Jahns R., Borgese F., Lindenthal S, Straub A., Motais R., Fievet B. Trout red blood cell arrestin (TRCarr), a novel member of the arrestin family: cloning, immunoprecipitation and expression of recombinant TRCarr . Biochem. J. 1996. 316, N 2. P. 497-506. CrossRef PubMed PubMedCentral
  26.  
  27. Jensen F. B. Regulatory volume decrease in carp red blood cells: mechanisms and oxygenation-dependency of volume-activated potassium and amino acid transport . J. Exp. Biol. 1995. 198. P. 155-165. PubMed
  28.  
  29. Jensen F.B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport (review) . Acta Physiol. Scand. 2004. 182, N 3. P. 215-227. CrossRef PubMed
  30.  
  31. Jensen F.B.; Weber R. E. Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia . J. Comp. Physiol., B. 1989. 156, N 2. P. 197-203. CrossRef  
  32. Motais R., Borgese F., Fievet B. Garcia-Romeu F. Regulation of Na+/H+ exchange and pH in erythrocytes of fish . Comp. Biochem. Physiol. 1992. 102a, N 4. P. 597-602.  CrossRef  
  33. Perry S.F., Montpetit C.J., Julio A.E., Moore K. The influence of chronic anaemia on catecholamine secretion in the rainbow trout (Oncorhynchus mykiss) . J. Comp. Physiol. 1999. 169, N 4/5. P. 335-343.  CrossRef  
  34. Phillips M.C.L., Moyes C.D., Tufts B.L. The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells . J. Exp. Biol. 2000. 203, N 6. P. 1039-1045. PubMed
  35.  
  36. Reid S.D., Perry S.F. The effects of hypoxia, in vivo, on red blood cell b-adrenoreceptors in the rainbow trout, Oncorhynchus mykiss . Fish Physiol. Biochem. 1995. 14, N 6. P. 217-240. CrossRef PubMed
  37.  
  38. Richards J. G., Wang Y. S., Brauner C. J., Gonzalez R. J., Patrick M. L., Schulte P. M., Choppari-Gomes A. R., Almeida-Val V. M., Val A. L. Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia . J. Comp. Physiol B. 2007. 177. P. 361-374. CrossRef PubMed
  39.  
  40. Soldatov A.A. The effect of hypoxia on red blood cells of flounder: a morphologic and autoradiographic study . J. Fish. Biol. 1996. 48, N 3. P. 321-328. CrossRef  
  41. Tetens V., Lykkeboe G., Christensen N.J. Potency of adrenaline and noradrenaline for b-adrenergic proton extrusion from red cells of rainbow trout, Salmo gairdneri . J. Exp. Biol. 1988. 134. P. 267-280. PubMed
  42.  
  43. Tiihonen K., Nikinmaa M. Short communication substrateutilization by carp (Cyprinus carpio) erythrocytes . J. Exp. Biol. 1991. 161. P. 509-514.
  44.  
  45. Walsh P. J., Wood C. M., Thomas S., Perry S. F. Characterization of red blood cell metabolism in rainbow trout. Ibid. 1990. 154. P. 475-489.
  46.  
  47. Wells R.M.G. Blood-gas transport and hemoglobin function: adaptations for functional and environmental hypoxia . Fish. Physiol. 2009. 27. P. 255-299. CrossRef  
  48. Wood C.M., Simmons H. The conversion of plasma HCO3to CO2 by rainbow trout red blood cells in vitro: adrenergic inhibition and the influence of oxygenation status . Fish. Physiol. and Biochem. 1994. 12, N 6. P. 445-454.  CrossRef PubMed
  49.  
  50. Zipper H., Brunner H., Bernhagen J., Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications . Nucleic Acids Res. 2004. 32, N 12. P. e103. CrossRef PubMed PubMedCentral
  51.    

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.