Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(2): 9-17


Effect of hydrogen sulfide donor NaHs on the functional state of the respiratory chain of the rat heart mitochondria

Semenykhina OM, Strutyns'ka NA, Bud'ko AIu, Vavilova HL, Sahach VF

    O.O. Bogomoletz Institute of Physiology National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz59.02.009

Abstract

In experiments on mitochondria isolated from the heart tissue of adult rats we studied the effects of a donor of hydrogen sulfide, NaHS, on the respiratory chain of the organelles. We found that NaHS (10(-9)-10(-6) mol/l) caused a dose-dependent decrease in the rate of oxygen consumption in the presence of succinate and ADP (state 3 to Chance), and in the absence of ADP (state 4). The decrease in the rate of oxygen consumption in a concentration NaHS 10(-9) mol/l and 10(-8) mol/l associated with an increased conjugation of oxidation and phosphorylation, as evidenced by the increase in the respiratory control, the efficiency of oxidative phosphorylation (ADP/O) is not changed. Our studies suggest a protective effect of hydrogen sulfide donor on the functional state of the mitochondria. To elucidate of other the mechanisms of the protective action H2S we also investigated the effect of hydrogen sulfide donor on the mitochondrial swelling. It was found that NaHS in the range of concentration 10(-12) - 10(-4) mol/l influences the level of mitochondria swelling of the rats heart in the dose-dependent manner. It was also shown that when the concentration of Ca2+ 1 nmol/mg protein in the medium, under the action of hydrogen sulfide in the donor concentration range 10(-12) - 10(-8) mol/l, there was a moderate swelling of rats heart mitochondria. Under the action of NaHS at a concentration of 10(-9) mol/l it was observed swelling of the mitochondria, the maximum change in the level of which was 11%. Inhibitor of mitochondrial ATP-sensitive K+ channels (K(ATP) channels) 5-hydroxydecanoate (10(-4) mol/l) partially reduced the mitochondrial swelling in the presence of NaHS (10(-9) mol/l), which may indicate the activation of K(ATP) channels. Our studies point for possible involvement of mitochondrial K(ATP) channels in implementation of the mechanisms of H2S.

Keywords: mitochondrial permeability transition pore(MPTP), hydrogen sulfide, respiration.

References

  1. Kosterin S.A., Bratkova N.F., Kurskii M.D. Rol' sar kolemmi i mitohondrii v obespechenii kal'tsievogo kontrolya rasslableniya miometriya . Biohimiya. 1985. 50, N 8. P.1350-1361.
  2.  
  3. Moibenko A.A., Dosenko V.E., Parhomenko A.N. Endogennie mehanizmi kardioprotektsii kak osnova patogeneticheskoi terapii zabolevanii serdtsa. K.: Nauk. dumka, 2008.
  4.  
  5. Strutins'ka N.A., Semenihina O.M., Chorna S.V., Vavilova G.L., Sagach V.F. Sirkovoden' prignichuie kal'tsiiindukovane vidkrivannya mitohondrial'noi pori u sertsi doroslih i starih shchuriv . Fiziol. zhurn. 2011. 57, N 6. P.3-15.
  6.  
  7. Tkachenko G.M., Kurgalyuk N.M,. Vovkovich L.S. Vpliv aktivatora KATR-kanaliv pinatsidilu na funktsionuvannya mitohondrii pechinki shchuriv iz riznoyu rezistentnistyu do gipoksii za stresu . Ukr. biohim. zhurn. 2004. 76, N 1. P.56-64.
  8.  
  9. Shimans'ka T.V., Goshovs'ka Yu.V., Semenihina O.M., Sagach V.F. Vpliv sirkovodnyu na reaktsii izol'ovanogo sertsya shchuriv pri navantazhenni ob'iemom i ishemii-reperfuzii . Fiziol. zhurn. 2012. 58, N 6. P.57-66.
  10.  
  11. Ali M.Y., Ping C.Y., Mok Y.Y., Ling L., Whiteman M., Bhatia M., Moore P.K. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? . Brit. J. Pharmacol. 2006. N 149. p. 625-634. CrossRef PubMed PubMedCentral
  12.  
  13. Baukrowitz T. Fakler B. KATP channels gated by intracellular nucleotides and phospholipids . Eur. J Biochem. 2000. N 267. p. 5842-5848. CrossRef PubMed
  14.  
  15. Billaut-Laden I., Rat E., Allorge D., Crunelle-Thibaut A., Cauffiez C., Chevalier D., Lo-Guidice J.M., Broly F. Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme . Toxicol. Lett. 2006. N 165. p.101-111. CrossRef PubMed
  16.  
  17. Bian J.S., Yong Q.C., Pan T.T., Feng Z.N., Ali M.Y., Zhou S., Moore P.K. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes . J. Pharmacol Exp. Therap. 2006. N 316. p. 670-678.
  18.  
  19. Chance B., WilliamsG. The respiratory chain and oxydative rhosphorylation . Adv.Enzymol. 1956. 17. P. 65-134.
  20.  
  21. Elrod J.W., Calvert J.W., Morrison J., Doeller J.E., Kraus D.W., Tao L., Jiao X., Scalia R., Kiss L., Szabo C., Kimura H., Chow C.W., Lefer D.J. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function . Proc. Natl. Acad. Sci USA 2007. N 104. p. 15560-15565. CrossRef PubMed PubMedCentral
  22.  
  23. Ichas F., Jonaville L.S., Mazat J.P Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals . Cell. 1997. N 89. P.1145-1153. CrossRef  
  24. Johansen D., Ytrehus K., Baxter G.F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemiareperfusion injury-evidence for a role of K ATP channels . Basic. Res. Cardiol. 2006. N 101. p. 53-60. CrossRef PubMed
  25.  
  26. Jha S., Calvert J.W. Duranski MR. Ramachandran A. Lefer DJ. Hydrogen sulfide attenuates hepatic ischemiaVpliv donora sirkovodnyu NaHS na funktsional'nii stan dihal'nogo lantsyuga mitohondrii sertsya shchuriv ISSN 0201-8489 Fiziol. zhurn., 2013, T. 59, N 2 17 reperfusion injury: Role of antioxidant and antiapoptotic signaling . Amer. J .Physiol. Heart. Circulat. Physiol. 2008. N 295. p. 801-806.
  27.  
  28. Kabil O., Banerjee R. Redox biochemistry of hydrogen sulfide . J. Biol. Chem. 2010. N 285. p. 21903-21907. CrossRef PubMed PubMedCentral
  29.  
  30. Li L., Bhatia M., Moore P.K. Hydrogen sulphide-a novel mediator of inflammation? . Curr. Opin. Pharmacol. 2006. N 6. p. 125-129. CrossRef PubMed
  31.  
  32. Lim J.J., Liu Y.H., Khin E.S., Bian J.S. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells . Amer. J. Physiol. Cell. Physiol. 2008. N 29. p. 1261-1270. CrossRef PubMed
  33.  
  34. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent . J. Biol. Chem. 1951. N 1. P.265-275. PubMed
  35.  
  36. Ming Fua, Weihua Zhangb, Lingyun Wub, Guangdong Yangd, Hongzhu Lia, Rui Wanga. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production . PNAS. 2012. N 8.P. 2943-2947. CrossRef PubMed PubMedCentral
  37.  
  38. Pan T.T., Neo K.L., Hu L.F., Yong Q.C., Bian J.S. H2S preconditioninginduced PKC activation regulates intracellular calcium handling in rat cardiomyocytes . Amer. J. Physiol. Cell Physiol. 2008. N 294. R. 169-177.
  39.  
  40. Rasola A., Bernardi P. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis . Cell Calcium. 2011. N 50. p.222-233. CrossRef PubMed
  41.  
  42. Reiffenstein R.J., Hulbert W.C., Roth S.H. Toxicology of hydrogen sulfide . Pharmacol. and Toxicol. 1992. N 32. P.109-134.
  43.  
  44. Shibuya N., Mikami Y., Kimura Y., Nagahara N., Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide . J. Biochem. 2009. N 146. p. 623-626. CrossRef PubMed
  45.  
  46. Shibuya N., Tanaka M., Yoshida M., Ogasawara Y., Togawa T., Ishii K., Kimura H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain . Antioxid. Redox. Signal. 2009. N 11. p. 703-714. CrossRef PubMed
  47.  
  48. Sojitra B., Bulani Y., Putcha U.K., Kanwal A., Gupta P., Kuncha M., Banerjee S.K. Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice . Mol. Cell Biochem. 2012. N 360. p. 61-69. CrossRef PubMed
  49.  
  50. Sodha N.R., Clements R.T., Feng J., Liu Y., Bianchi C., Horvath E.M., Szabo C., Sellke F.W. The effects of therapeutic sulfide on myocardial apoptosis in response to injury. ischemiareperfusion . Eur. J. Cardiothorac. Surg 2008. N 33. p. 906-913. CrossRef PubMed PubMedCentral
  51.  
  52. Wang R. The gasotransmitter role of hydrogen sulfide . Antioxid. Redox. Signal. 2003. N 5. p. 493-501. CrossRef PubMed
  53.  
  54. Zhao X., Zhang L.K., Zhang C.Y., Zeng X.J., Yan H., Jin Tang C.S., Du JB. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats . Hypertens Res. 2008. N 31. p. 1619-1630. CrossRef PubMed
  55.  
  56. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener . EMBO J. 2001. N 20. p. 6008-6016. CrossRef PubMed PubMedCentral
  57.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.